

Evaluating Conversational Recommender Systems via Large Language Models **A User-Centric Framework**

Nuo Chen, Quanyu Dai, Xiaoyu Dong, Xiao-Ming Wu, Zhenhua Dong

Introduction

Conversational Recommender Systems

- A Conversational Recommender System (CRS) identifies user interests through conversation.
- A CRS not only provides item recommendations but also manages dialogues with users. (Jannach et al.,2021; Gao et al., 2021)
- Good CRS: good recommendation and good dialogue management

- A survey. Al Open, 2:100–126.

Any movies similar to The Day After Tomorrow?

You might be interested in disaster movies. You may enjoy 2012.

Recommendation List

The Matrix (1999)

The Shawshank Redemption (1994)

Avatar (2009)

• Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and 733Li Chen. 2021. A survey on conversational recommender systems. ACM Comput. Surv., 54(5). • Chongming Gao, Wengiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng Chua. 2021. Advances and challenges in conversational recommender systems:

Challenges in Evaluating CRSs

• Complexity of the task

- Traditional recommender systems
 - Item recommendations only.
- CRSs
 - Not only recommendation but also conversation.
 - Recommendation in conversation
- How to evaluate?

Any movies similar to The Day After Tomorrow?

You might be interested in disaster movies. You may enjoy 2012.

Recommendation List

The Matrix (1999)

The Shawshank Redemption (1994)

Avatar (2009)

Research Gap

- Existing evaluation practice (e.g., Chen et al., 2019)
 - Treating item recommendation and dialogue management as isolated task
 - Using *rule-based metrics*
 - Drawbacks
 - Rule-based evaluation metrics fail to align with actual user experience (Reiter,
 - Fails to fully capture the essence of conversational recommendation 2018; Chen et al., 2017)

- Proceedings of EMNLP-IJCNLP'19, pages 1803–1813.676.
- Ehud Reiter. 2018. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–401
- SIGIR'17, page 15–24. 682.

• Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. Towards knowledge-based recommender dialog system. In

• Ye Chen, Ke Zhou, Yigun Liu, Min Zhang, and Shaoping Ma. 2017. Meta-evaluation of online and offline web search evaluation metrics. In Proceedings of

Research Gap

- Recent Advances in Large Language Models (LLMs)
 - Enhanced nuanced natural language understanding
 - Significant potential in aligning with human text quality preferences (e.g., Liu et al., 2023)
 - Implications for CRSs
 - LLMs as a promising tool for intelligent evaluation of CRSs
- recommendation

Proceedings of EMNLP 2023, pp 2511–2522

Only a few studies have investigated LLM-based evaluation for conversational

• Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. 2023. G-eval: NLG evaluation using gpt-4 with better human alignment. In

Our Contribution

- In this work, we propose a user-centric evaluation framework based on LLMs for CRS, namely Conversational Recommendation Evaluator (CoRE)
- Correction Correction Consists of two main components:
 - (1) LLM-As-Evaluator.
 - Leverage LLM as evaluator to assign scores to 12 key factors influencing user experience in CRSs.
 - (2) Multi-Agent Debater.
 - A multi-agent debate framework with four distinct roles to discuss and synthesize the 12 evaluation factors into a unified overall performance score.

Literature Review

Evaluating Conversational Recommender Systems

- Traditional Methods (Chen et al., 2019; Wang et al., 2022a,b; Zhang et al., 2024; Feng. et al., 2023):
 - Use rule-based measures (e.g., Recall, BLEU) for separate tasks Often fail to capture the holistic user experience (Reiter, 2018; Chen et al., 2017)
- Limitations:
 - Isolated evaluation makes it hard to assess overall system performance
 - Difficulty in balancing recommendation accuracy with dialogue quality
- In Proceedings of EMNLP'19
- learning. In KDD'22
- Lu Zhang, Chen Li, Yu Lei, Zhu Sun, and Guanfeng Liu. 2024. An empirical analysis on multi-turn conversational recommender systems. In SIGIR'24
- recommender system. arXiv preprint
- Ehud Reiter. 2018. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–401
- SIGIR'17, page 15–24. 682.

• Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To- wards knowledge-based recommender dialog system.

• Ting-Chun Wang, Shang-Yu Su, and Yun-Nung Chen. 2022a. Barcor: Towards a unified framework for conversational recommendation systems. arXiv preprint • Xiaolei Wang, Kun Zhou, Ji-Rong Wen, and Wayne Xin Zhao. 2022b. Towards unified conversational recommender systems via knowledge-enhanced prompt

• Yue Feng, Shuchang Liu, Zhenghai Xue, Qingpeng Cai, Lantao Hu, Peng Jiang, Kun Gai, and Fei Sun. 2023. A large language model enhanced conversational

• Ye Chen, Ke Zhou, Yiqun Liu, Min Zhang, and Shaoping Ma. 2017. Meta-evaluation of online and offline web search evaluation metrics. In Proceedings of

Large Language Models as Evaluators

Motivation for LLMs:

- Strong natural language understanding capabilities (Liu et al., 2023; Fu et al., 2024; Chen et al., 2023b)
- Proven potential to align with human evaluation of text quality (Chiang and Lee, 2023; Wang et al., 2024; Gao et al., 2023)
- Early work shows LLMs can assess both recommendation relevance and dialogue fluency
- Limitations:
 - Few studies have used LLMs to integrate evaluation across both dimensions
- EMNLP'23
- An empirical study. In JCNLP-AACL 2023 (Findings)
- and 823 Yue Zhang. 2024. Pandalm: An automatic evaluation benchmark for Ilm instruction tuning optimization. ArXiv preprint
- Cheng-Han Chiang and Hung-yi Lee. 2023. Can large language models be an alternative to human evaluations? In ACL'23
- Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei 708 Liu. 2024. GPTScore: Evaluate as you desire. In NAACL'24

• Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. 2023. G-eval: NLG evaluation using gpt-4 with better human alignment. In

• Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. 2023b. Exploring the use of large language models for reference-free text quality evaluation:

• Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, • Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Shiping Yang, and Xiaojun Wan. 2023. Human-like summarization evaluation with chatgpt. ArXiv preprint

Proposed Framework

LLM-As-Evaluator

- Evaluate CRS dialogues on 12 key factors influencing user experience.
- Factors divided into 4 dimensions:
 - Dialogue Actions: Coherence, Recoverability, Proactiveness
 - Language Expression: Grammar, Naturalness, Appropriateness
 - Recommended Items: Effectiveness, Novelty, Diversity
 - **Response Content: Semantic** Relevance, Explainability, Groundness
 - Each factor scored (0-4) with rationale provided by the LLM.

LLM-As-Evaluator

- Evaluate CRS dialogues on 12 key factors influencing user experience.
- Factors divided into 4 dimensions:
 - Dialogue Actions: Coherence, **Recoverability, Proactiveness**
 - Language Expression: Grammar, Naturalness, Appropriateness
 - Recommended Items: Effectiveness, Novelty, Diversity
 - **Response Content: Semantic** Relevance, Explainability, Groundness
 - Each factor scored (0-4) with rationale provided by the LLM.

Multi-Agent Debater

- Four LLM agents (Common User, Domain Expert, Linguist, HCI Expert) simulate different perspectives.
- Debate and negotiate to synthesize a single overall score (0-100).
- Process:
 - Round-based scoring & justification.
 - Continue until consensus or max turns reached.
 - Final score = average of agents' final scores.

Experiments

Experimental Settings

- **Datasets**:
 - ReDial (movie recommendations), OpenDialKG (multi-domain)
- **CRSs for Comparison**
 - 2019), UniCRS (Wang et al., 2022b)
- User Simulator (Wang et al., 2023a)
 - Generates 3–5 turn conversations (based on GPT-4o-mini)

- Ting-Chun Wang, Shang-Yu Su, and Yun-Nung Chen. 2022a. Barcor: Towards a unified framework for conversational recommendation systems.
- language models. In EMNLP'23
- In EMNLP-IJCNLP'19
- Xiaolei Wang, Kun Zhou, Ji-Rong Wen, and Wayne Xin 815 Zhao. 2022b. Towards unified conversational recommender systems via knowledge-enhanced prompt learning. In KDD'22

BARCOR (Wang et al., 2022a), CHATCRS (Wang et al., 2023a), KBRD (Chen et al.,

• Xiaolei Wang, Xinyu Tang, Xin Zhao, Jingyuan Wang, and Ji-Rong Wen. 2023a. Rethinking the evaluation for conversational recommendation in the era of large • Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. Towards knowledge-based recommender dialog system.

- **Factor-Level Evaluation:**
 - LLM scores on 12 key factors show high correlation with human ratings.
- **Overall Evaluation:**
 - Multi-Agent Debate produces stable, reliable overall scores (0-100) that closely match human judgments.
 - The CoRE framework significantly outperforms traditional metrics (Recall, Persuasiveness) in reflecting true user experience.

Factor	GPT-40-mini		GLM-4-Air		LLaMa-3-8B	
	r	$ au_b$	r	$ au_b$	r	$ au_b$
Coherence	0.642^{\heartsuit}	0.564 [¢]	$\underline{0.671}^{\heartsuit}$	<u>0.585</u>	0.698 ♡	0.617 [♠]
Rec.	0.624^{\heartsuit}	0.573 [•]	0.609^{\heartsuit}	<u>0.558</u>	0.609^{\heartsuit}	0.558 [•]
Proactivenes	s 0.717[♡]	0.655 [•]	0.673^{\heartsuit}	<u>0.603</u>	0.669^{\heartsuit}	0.603 [•]
Gra.	0.723°	0.645 [♠]	0.626^{\heartsuit}	<u>0.576</u>	0.626^{\heartsuit}	0.575 [•]
Naturalness	0.743°	0.689 [¢]	0.679^{\heartsuit}	<u>0.610</u>	0.543	0.492
App.	0.622^{\heartsuit}	0.612 [•]	0.378	0.370	0.420	0.407
Effectivenes	s <u>0.736</u> ♡	<u>0.653</u>	0.742^{\heartsuit}	0.654 [◆]	0.470	0.411
Novelty	0.266	0.228	0.355	0.291	0.242	0.207
Diversity	0.424	0.398	0.211	0.191	0.058	0.052
Sem.	0.604^{\heartsuit}	0.554 [◆]	0.616^{\heartsuit}	0.542 [•]	0.578	0.524 [•]
Exp.	0.729^{\heartsuit}	<u>0.662</u>	0.689^{\heartsuit}	0.611 [♠]	0.755^{\heartsuit}	0.692 [¢]
Groundness	<u>0.648</u> [♡]	<u>0.581</u>	0.750^{\heartsuit}	0.680 [¢]	0.563	0.516 [•]

- **Factor-Level Evaluation:**
 - LLM scores on 12 key factors show high correlation with human ratings.
- **Overall Evaluation:**
 - Multi-Agent Debate produces stable, reliable overall scores (0-100) that closely match human judgments.
 - The CoRE framework significantly outperforms traditional metrics (Recall, Persuasiveness) in reflecting true user experience.

Factor	GPT-40-mini		GLM-4-Air		LLaMa-3-8B	
	r	$ au_b$	r	$ au_b$	r	$ au_b$
Coherence	0.642^{\heartsuit}	0.564 [♠]	$\underline{0.671}^{\heartsuit}$	<u>0.585</u>	0.698 ♡	0.617 [♠]
Rec.	0.624^{\heartsuit}	0.573 [•]	0.609^{\heartsuit}	<u>0.558</u>	0.609^{\heartsuit}	0.558 [•]
Proactivenes	s 0.717[♡]	0.655 [•]	0.673^{\heartsuit}	<u>0.603</u>	0.669^{\heartsuit}	0.603 [•]
Gra.	0.723^{\heartsuit}	0.645 [♠]	0.626^{\heartsuit}	<u>0.576</u>	0.626^{\heartsuit}	0.575 [•]
Naturalness	0.743°	0.689 [¢]	0.679^{\heartsuit}	<u>0.610</u>	0.543	0.492
App.	0.622^{\heartsuit}	0.612 [•]	0.378	0.370	0.420	0.407
Effectivenes	s <u>0.736</u> ♡	<u>0.653</u>	0.742^{\heartsuit}	0.654 [◆]	0.470	0.411
Novelty	0.266	0.228	0.355	0.291	0.242	0.207
Diversity	0.424	0.398	0.211	0.191	0.058	0.052
Sem.	0.604^{\heartsuit}	0.554 [◆]	0.616^{\heartsuit}	0.542 [•]	0.578	0.524 [•]
Exp.	0.729^{\heartsuit}	<u>0.662</u>	0.689^{\heartsuit}	0.611 [♠]	0.755^{\heartsuit}	0.692 [¢]
Groundness	<u>0.648</u> [♡]	<u>0.581</u>	0.750^{\heartsuit}	0.680 [¢]	0.563	0.516 [•]

- System Performance:
 - CHATCRS stands out as the best performer. Other systems (BARCOR, KBRD, UniCRS) exhibit weaknesses in semantic relevance and explainability.

Gro represents Groundness.

Figure 3: The scores of four systems on 12 factors are provided by GPT-40-mini, LLaMa-3-8B, and GLM-4-Air. Coh. represents Coherence; Rec. represents Recoverability; Pro. represents Proactiveness; Gra. represents Grammatical Correctness; Nat. represents Naturalnsee; App. represents Appropriateness; Eff. represents Effectiveness; Nov. represents Novelty; Div. represents Diversity; Sem. represents Semantic Relevance; Exp. represents Explainability:

- System Performance:
 - CHATCRS stands out as the best performer. Other systems (BARCOR, KBRD, UniCRS) exhibit weaknesses in semantic relevance and explainability.

Figure 4: The scores of BARCOR, CHATCRS, KBRD and UniCRS after multi-agent discussion.

Conclusion

Conclusions

- Review:
 - Presented our user-centric CoRE framework for evaluating conversational recommender systems (CRS).
 - Demonstrated how LLMs can score 12 key factors and how a multi-agent debate synthesizes these into an overall score.
 - We benchmarked 4 CRSs on 2 datasets and collected real human data for validation.
- Main Findings:
 - High Agreement: CoRE's evaluations closely match human ratings.
 - Effective LLM Evaluation: LLMs accurately capture user experience in CRS.
 - System Weaknesses: Neural network-based CRS show limitations in semantic relevance, explainability, and proactiveness.

Thank you for your time.