
Nuo Chen, Quanyu Dai, Xiaoyu Dong, Xiao-Ming Wu, Zhenhua Dong

Evaluating Conversational Recommender 
Systems via Large Language Models

A User-Centric Framework



Introduction



Conversational Recommender Systems

• A Conversational Recommender System 
(CRS) identifies user interests through 
conversation. 

• A CRS not only provides item 
recommendations but also manages 
dialogues with users.  (Jannach et 
al.,2021; Gao et al., 2021) 

• Good CRS: good recommendation and 
good dialogue management

• Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and 733Li Chen. 2021. A survey on conversational recommender systems. ACM Comput. Surv., 54(5). 
• Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng Chua. 2021. Advances and challenges in conversational recommender systems: 

A survey. AI Open, 2:100–126.
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Challenges in Evaluating CRSs

• Complexity of the task 
• Traditional recommender systems 

• Item recommendations only. 
• CRSs 

• Not only recommendation but also 
conversation.  

• Recommendation in 
conversation 

• How to evaluate?
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Research Gap

• Existing evaluation practice (e.g., Chen et al., 2019) 
• Treating item recommendation and dialogue management as isolated task 
• Using rule-based metrics 
• Drawbacks 

• Fails to fully capture the essence of conversational recommendation 
• Rule-based evaluation metrics fail to align with actual user experience (Reiter, 

2018; Chen et al., 2017)

• Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding,Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. Towards knowledge-based recommender dialog system. In 
Proceedings of EMNLP-IJCNLP’19, pages 1803–1813.676. 

• Ehud Reiter. 2018. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–401 
• Ye Chen, Ke Zhou, Yiqun Liu, Min Zhang, and Shaoping Ma. 2017. Meta-evaluation of online and offline web search evaluation metrics. In Proceedings of 

SIGIR’17, page 15–24. 682.



Research Gap

• Recent Advances in Large Language Models (LLMs) 
• Enhanced nuanced natural language understanding  
• Significant potential in aligning with human text quality preferences (e.g., Liu et al., 

2023) 
• Implications for CRSs 

• LLMs as a promising tool for intelligent evaluation of CRSs 
• Only a few studies have investigated LLM-based evaluation for conversational 

recommendation

• Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,Ruochen Xu, and Chenguang Zhu. 2023. G-eval: NLG evaluation using gpt-4 with better human alignment. In 
Proceedings of EMNLP 2023, pp 2511–2522



Our Contribution

• In this work, we propose a user-centric evaluation framework based on LLMs for CRS, 
namely Conversational Recommendation Evaluator (CoRE) 

• CoRE consists of two main components:  
• (1) LLM-As-Evaluator.  

• Leverage LLM as evaluator to assign scores to 12 key factors influencing user 
experience in CRSs.  

• (2) Multi-Agent Debater.  
• A multi-agent debate framework with four distinct roles to discuss and 

synthesize the 12 evaluation factors into a unified overall performance score.
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Literature Review



 Evaluating Conversational Recommender Systems

• Traditional Methods  (Chen et al., 2019; Wang et al., 2022a,b; Zhang et al., 2024; Feng 
et al., 2023): 
-  Use rule-based measures (e.g., Recall, BLEU) for separate tasks 
- Often fail to capture the holistic user experience (Reiter, 2018; Chen et al., 2017) 

• Limitations: 
- Isolated evaluation makes it hard to assess overall system performance 
- Difficulty in balancing recommendation accuracy with dialogue quality

• Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To- wards knowledge-based recommender dialog system. 
In Proceedings of EMNLP’19  

• Ting-Chun Wang, Shang-Yu Su, and Yun-Nung Chen. 2022a. Barcor: Towards a unified framework for conversational recommendation systems. arXiv preprint 
• Xiaolei Wang, Kun Zhou, Ji-Rong Wen, and Wayne Xin Zhao. 2022b. Towards unified conversational recommender systems via knowledge-enhanced prompt 

learning. In KDD’22 
• Lu Zhang, Chen Li, Yu Lei, Zhu Sun, and Guanfeng Liu. 2024. An empirical analysis on multi-turn conversational recommender systems. In SIGIR’24 
•  Yue Feng, Shuchang Liu, Zhenghai Xue, Qingpeng Cai, Lantao Hu, Peng Jiang, Kun Gai, and Fei Sun. 2023. A large language model enhanced conversational 

recommender system. arXiv preprint 

• Ehud Reiter. 2018. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–401 
• Ye Chen, Ke Zhou, Yiqun Liu, Min Zhang, and Shaoping Ma. 2017. Meta-evaluation of online and offline web search evaluation metrics. In Proceedings of 

SIGIR’17, page 15–24. 682.



Large Language Models as Evaluators

• Motivation for LLMs: 
- Strong natural language understanding capabilities (Liu et al., 2023; Fu et al., 2024; Chen 

et al., 2023b) 
- Proven potential to align with human evaluation of text quality (Chiang and Lee, 2023; 

Wang et al., 2024; Gao et al., 2023) 
- Early work shows LLMs can assess both recommendation relevance and dialogue fluency 

• Limitations: 
- Few studies have used LLMs to integrate evaluation across both dimensions

• Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. 2023. G-eval: NLG evaluation using gpt-4 with better human alignment. In 
EMNLP’23 

• Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and  Ruifeng Xu. 2023b. Exploring the use of large language models for reference-free text quality evaluation: 
An empirical study. In JCNLP-AACL 2023 (Findings) 

• Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, 
and 823 Yue Zhang. 2024. Pandalm: An automatic evaluation benchmark for llm instruction tuning optimization. ArXiv preprint 

• Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Shiping Yang, and Xiaojun Wan. 2023. Human-like summarization evaluation with chatgpt. ArXiv preprint 
• Cheng-Han Chiang and Hung-yi Lee. 2023. Can large language models be an alternative to human evaluations? In ACL’23 
• Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei 708 Liu. 2024. GPTScore: Evaluate as you desire. In NAACL’24 
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LLM-As-Evaluator

• Evaluate CRS dialogues on 12 key factors 
influencing user experience.  

• Factors divided into 4 dimensions:  
• Dialogue Actions: Coherence, 

Recoverability, Proactiveness  
• Language Expression: Grammar, 

Naturalness, Appropriateness  
• Recommended Items: Effectiveness, 

Novelty, Diversity  
• Response Content: Semantic 

Relevance, Explainability, Groundness  
• Each factor scored (0–4) with rationale 

provided by the LLM.
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Multi-Agent Debater

• Four LLM agents (Common User, Domain Expert, Linguist, HCI Expert) simulate 
different perspectives.  

• Debate and negotiate to synthesize a single overall score (0–100).  
• Process:  

• Round-based scoring & justification.  
• Continue until consensus or max turns reached.  
• Final score = average of agents’ final scores.



Experiments



Experimental Settings

• Datasets:  
• ReDial (movie recommendations), OpenDialKG (multi-domain) 

• CRSs for Comparison  
• BARCOR (Wang et al., 2022a), CHATCRS (Wang et al., 2023a ), KBRD  (Chen et al., 

2019), UniCRS (Wang  et al., 2022b) 
• User Simulator (Wang et al., 2023a) 

• Generates 3–5 turn conversations (based on GPT-4o-mini)

• Ting-Chun Wang, Shang-Yu Su, and Yun-Nung Chen. 2022a. Barcor: Towards a unified framework for conversational recommendation systems. 
• Xiaolei Wang, Xinyu Tang, Xin Zhao, Jingyuan Wang, and Ji-Rong Wen. 2023a. Rethinking the evaluation for conversational recommendation in the era of large  

language models. In EMNLP’23  
• Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. Towards knowledge-based recommender dialog system. 

In EMNLP-IJCNLP’19  
• Xiaolei Wang, Kun Zhou, Ji-Rong Wen, and Wayne Xin 815 Zhao. 2022b. Towards unified conversational recommender systems via knowledge-enhanced prompt 

learning. In KDD’22 
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Results & Findings

•  Factor-Level Evaluation:  
• LLM scores on 12 key factors 

show high correlation with 
human ratings. 

•  Overall Evaluation:  
• Multi-Agent Debate produces 

stable, reliable overall scores (0–
100) that closely match human 
judgments.  

• The CoRE framework significantly 
outperforms traditional metrics 
(Recall, Persuasiveness) in 
reflecting true user experience.
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Conclusions

•  Review:  
• Presented our user-centric CoRE framework for evaluating conversational 

recommender systems (CRS). 
•  Demonstrated how LLMs can score 12 key factors and how a multi-agent debate 

synthesizes these into an overall score.  
•  We benchmarked 4 CRSs on 2 datasets and collected real human data for 

validation. 
• Main Findings:  

• High Agreement: CoRE’s evaluations closely match human ratings.  
• Effective LLM Evaluation: LLMs accurately capture user experience in CRS.  
• System Weaknesses: Neural network-based CRS show limitations in semantic 

relevance, explainability, and proactiveness.



Thank you for your time.


