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ABSTRACT
Session-based recommendation predicts users’ future interests
from previous interactions in a session. Despite the memorizing of
historical samples, the request of unlearning, i.e., to remove the ef-
fect of certain training samples, also occurs for reasons such as user
privacy or model fidelity. However, existing studies on unlearning
are not tailored for the session-based recommendation and seldom
work has conducted the research to evaluate the unlearning effec-
tiveness in the session-based recommendation scenario.

In this paper, we firstly propose SRU, a session-based
recommendation unlearning framework, which enables high un-
learning efficiency, accurate recommendation performance, and
improved unlearning effectiveness in session-based recommenda-
tion. To improve the unlearning effectiveness, we further propose
three extra data deletion strategies. Besides, we set different meth-
ods to explore the evaluation of unlearning effectiveness in session-
based recommendation: For item-level unlearning we propose an
evaluation metric that measures whether the unlearning sample
can be inferred after the data deletion to verify the unlearning ef-
fectiveness. And for session-level unlearning, we apply the mem-
bership inference attack to validate the unlearning effectiveness.
We implement SRU with three representative session-based rec-
ommendation models and conduct experiments on three bench-
mark datasets. Experimental results demonstrate the effectiveness
of our methods. Codes and data are available at https://github.com/
shirryliu/SRU-code.
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1 INTRODUCTION
Session-based recommendationmodels have shown their effective-
ness in predicting users’ future interests from memorized sequen-
tial interactions [16, 41]. However, the ability to eliminate the in-
fluence of specific training samples, known as unlearning, also
holds crucial significance. From a legitimacy perspective, several
data protection regulations have been proposed, such as the Gen-
eral Data Protection Regulation (GDPR) [26] and the California
Consumer Privacy Act (CCPA) [17]. These legislative regulations
emphasize individuals’ right to have their private information re-
moved from trained machine learning models. As for user perspec-
tive, there has been a surge in research which proved that various
user privacy information such as gender, age, and even political ori-
entation could be inferred from historical interactions with a rec-
ommender system [4, 6, 44]. Addressing privacy concerns, users
might find it imperative to request the expunction of specific his-
torical interactions. Besides, a proficient recommendation model
possesses the capacity to eliminate the impact of noisy training in-
teractions to gain better performance.
Machine unlearning.Machine unlearning enables amodel to for-
get certain data or patterns that it has previously learned. Exact un-
learning targets on completely eradicating the impact of the data
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Figure 1: Exact unlearning is hard to achieve. Due to the
similarity between sessions, user’s intend could still be in-
ferred from the rest of the sessions. And the unlearned item
could still be inferred due to collaborative correlations and
sequential connections across items in the session.

to be forgotten as if they never occurred in the training process.
A straightforward exact unlearning method is to remove the tar-
geted samples from the training dataset and then retrain the entire
model from scratch. Unfortunately, this approach is hindered by
its time-consuming and resource-intensive nature. To address this
issue, existing methods [1, 2] focus on enhancing the efficiency of
unlearning. One of the most representative unlearning methods is
SISA [1].The SISA initially divides the training dataset into disjoint
shards and sub-models are trained on each shard independently.
The final model prediction is by aggregating the predictions from
every sub-model through majority voting or average. In the event
of an unlearning request, sorely the sub-model that was trained on
the shard containing the unlearning data point is retrained, rather
than the entire model. SISA achieves significant improvement in
unlearning efficiency compared with the whole retraining.
Challenges of unlearning in session-based recommendation.
In the recommendation field, RecEraser [5] applies the SISA frame-
work to non-sequential collaborative filtering. Nevertheless, we ar-
gue that there still exists the following key challenges for unlearn-
ing in session-based recommendation:

i). Exact unlearning is hard to achieve. Existing exact unlearn-
ing methods hold the assumption that the effect of unlearning sam-
ples would be completely removed if such samples do not exist
in the retrained models. However, the assumption does not hold
for session-based recommendation. Different from other domains
such as image classification, where the correlations between train-
ing samples are sparse, there exists plenty of collaborative corre-
lations and sequential connections across the interacted items in
session-based recommendation. Consequently, simply removing
the unlearning samples cannot achieve the exact unlearning effect,
i.e., the unlearned item could still be inferred from the remaining
items in the session, as shown in Figure 1.

ii). Existing recommendation unlearning methods do not evalu-
ate the unlearning effectiveness. Existing methods [5, 23] mainly
focus on the trade-off between recommendation performance and
unlearning efficiency. However, seldom work conducted the eval-
uation regarding the unlearning effectiveness, i.e., to which extent
the effect of unlearned samples is eliminated. The evaluation is es-
pecially important to verify the unlearning effectiveness of session-
based recommendation, given the case that exact unlearning can-
not be simply achieved.

The proposed method. In this paper, we propose session-based
recommendation unlearning (SRU), an unlearning framework tai-
lored to session-based recommendation, achieving high unlearn-
ing efficiency, accurate recommendation, and improved unlearn-
ing effectiveness. Concretely, we first partition the training ses-
sions into separate shards according to the similarity of the ses-
sions and then a corresponding sub-model is trained upon each
data shard. Such a data division strategy attempts to make similar
sessions fall into the same shard, and thus each sub-model tends
to learn a clustering of similar sequential patterns, resulting in im-
proved recommendation performance. Utilizing the trained sub-
models, we can obtain the hidden states which represent the ses-
sion from the perspective of each sub-model. Then, an attention-
based aggregation layer is trained to fuse the hidden states based
on the correlations between the session and the centroid of the re-
spective data shard.

To address the first challenge, we propose three extra data dele-
tion strategies, including collaborative extra deletion (CED), neigh-
bor extra deletion (NED), and random extra deletion (RED). For
the second challenge, we propose specific calculation strategies for
the two scenarios: for item-level unlearning, we propose an eval-
uation metric that measures whether the unlearning sample can
be inferred after data deletion. The intuition is that if the unlearn-
ing is highly effective, the unlearning sample should have a low
probability of being inferred based on the remaining data. And for
session-level unlearning, we apply the membership inference at-
tack to validate whether the model could accurately classify the
unlearned sessions.

To verify the effectiveness of the proposed method, SRU is im-
plemented on three representative session-based recommendation
models including GRU4Rec [15], SASRec [20], and BERT4Rec [31].
We conduct a series of experiments on three benchmark datasets
and the result shows the effectiveness of the proposed method.
Contributions. To summarize, the main contributions lie in:
• We propose SRU to address the machine unlearning problem for

session-based recommendation. Three extra data deletion strate-
gies are proposed to improve the unlearning effectiveness, and
meanwhile, we use similarity-based clustering and attention-
based aggregation to keep a high recommendation performance.

• We propose an evaluation metric to verify the unlearning effec-
tiveness of session-based recommendation. The key idea is that
if the unlearning is effective, the unlearning sample should have
a low probability of being inferred after data deletion.

• We apply the membership inference attack to validate the
session-level unlearning effectiveness. If the session is success-
fully forgotten, then the MIA model should be more inclined
to classify deleted conversations as non-members which means
higher accuracy in identifying non-members.

• We conduct extensive experiments on three state-of-the-art
session-based recommendation models and three benchmark
datasets to show that SRU can achieve efficient and effective un-
learning while keeping high recommendation performance.

2 RELATEDWORK
In this section, we provide a literature review regarding session-
based recommendation and machine unlearning.
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2.1 Session-Based Recommendation
Session-based recommendation aims to capture a user’s dynamic
interests from her/his past interactions in the session. Early
Markov chains-based models [12, 13, 27, 29] predict a user’s forth-
coming interests according to the last interaction in the given ses-
sion. More recently, deep neural network models have been uti-
lized to capture complex sequential signals to improve session-
based recommendation. The representative session-based recom-
mendation models can be categorized into recurrent neural net-
work (RNN)-based models [9, 14], convolutional neural network
(CNN)-based models [32], attention-based models [20, 31], and
graph-based models [36]. Besides, self-supervised learning [43]
and contrastive learning [24, 37, 42] have also been applied to im-
prove session-based recommendation and plenty of models have
been emerged.

In this paper, we propose a framework that enables effective
and efficient unlearning for various session-based recommenda-
tion models, other than developing a new specific model. We adopt
three representative models, GRU4Rec, SASRec and BERT4Rec, as
backbone models for the experiments.

2.2 Machine Unlearning
The concept of machine unlearning was first proposed by [3], in re-
sponse to the requirement of “the right to be forgotten”. Unlearn-
ing methods can be broadly categorized into approximate unlearn-
ing methods and exact unlearning methods.

Approximate unlearning ensures that the performance of the
unlearned model closely aligns with that of a retrained model.
This reduces the time and computational cost of unlearning, but at
the potential expense of weaker privacy assurances. The approx-
imation can be achieved through differential privacy techniques,
such as certified unlearning [39]. For instance, [33] introduced
an unlearning method based on noisy stochastic gradient descent,
whereas [10] achieved certified unlearning based on Newton up-
dates. [3] proposed to use the gradient surgery which updates the
model parameters using the negative gradient of the unlearning
samples. [18] utilized a probabilistic model to approximate the un-
learning process. [7, 25] proposed to perturb the gradients ormodel
weights through the inverse Hessian matrix, which may incur ad-
ditional computational overheads.

Exact unlearning attempts to completely remove the effect of
the unlearning samples as if they have never occurred in the
training process, providing a stronger privacy guarantee. How-
ever, such methods could require the model to be retrained from
scratch, which is computationally expensive and time-consuming.
The most representative method for efficient exact unlearning is
SISA [1] since only the sub-model trained on the correspond-
ing data shard would be retrained for an unlearning request. [8]
adapted SISA for unlearning in graph neural networks. [11] mod-
ified the SISA algorithm to work for sequences of deletion re-
quests. Another kind of method for exact unlearning involves se-
lective influence estimators [35], which calculate the influence of
the unlearning samples on the model parameters. Although such
influence-based methods are effective in terms of privacy preserva-
tion, the high computational cost limits their application for real-
world scenarios [39].

Recently, unlearning in the recommendation scenario tends to
attract more research attention. Unlearning can not only help to
protect user privacy but also improve recommendation models
through eliminating the effect of noisy data and misleading infor-
mation [28]. [23] and [40] proposed to use fine-tuning and the al-
ternative least square algorithm for unlearning acceleration. [5]
and [22] extended the ideas of the SISA algorithm for collabora-
tive filtering. However, none of the existing methods is tailored for
session-based recommendation. Besides, existing methods mainly
focus on the unlearning efficiency, while failing to verify the ef-
fectiveness of the unlearning, i.e., to which extent the effect of the
unlearning sample is removed.

3 TASK FORMULATION
In this section, we first formulate the task of session-based recom-
mendation, upon which we define the task of item-level in a ses-
sion and session-level unlearning.

3.1 Notations and Definitions
Session-based recommendation aims to predict the user’s poten-
tial next action given previous interacted items in the session. We
formulate the task as follows:
Definition 3.1 (Session-based recommendation). Let V =
{𝑣1, 𝑣2, ..., 𝑣 |V | } be the set of items, D denotes the training interac-
tion sessions. S𝑖 = [𝑣𝑖1, ..., 𝑣

𝑖
𝑡 , ..., 𝑣

𝑖
𝑛] ∈ D denotes the 𝑖-th specific

interaction session in D, where 𝑣𝑖𝑡 ∈ V is the item interacted by
the user at time step 𝑡 , and 𝑛 is the current length of the session.
Given the historical sequence S𝑖 , the interaction probability over
candidate item 𝑣 at time step 𝑛 + 1 can be formalized as:

𝑝𝑖𝑣 = 𝑝 (𝑣𝑖𝑛+1 = 𝑣 |S𝑖 ,D) = M(𝑣 |S𝑖 ,D), (1)
where M denotes the involved recommendation model, e.g.,
GRU4Rec [14] and SASRec [20]. At the prediction stage, session-
based recommenders select the items with the highest top-𝐾 prob-
ability 𝑝𝑖𝑣 as the recommendation list for the user.

For privacy considerations or recommendation utility, an un-
learning request could occur to remove the effect of certain train-
ing samples. As an illustration, a user may want to revoke some
misclicks in an interaction session since the misclicks can down-
grade the recommendation quality or a user could also request to
hide the history of certain sensitive sessions for private concerns.
In this paper, we focus on item-level and session-level unlearning
in session-based recommendation, which is defined as follows:
Definition 3.2 (Item-level unlearning). We denote 𝑣𝑖𝑗 ∈ S𝑖 to be
the unlearning item that the user wants to revoke in the sessionS𝑖 .
The goal of item-level unlearning is to obtain an unlearned model
M𝑢 . Ideally, the unlearning sample 𝑣𝑖𝑗 should have no effect on the
unlearned model M𝑢 as if 𝑣𝑖𝑗 never occurred in the session.

Definition 3.3 (Session-level unlearning). Session-level unlearn-
ing aims to revoke the effect of a whole interaction session. We de-
note S𝑖 to be the unlearning session that the user wants the model
to delete from the training dataset. The goal of session-level un-
learning is to obtain an unlearned modelM𝑢 . Ideally, the unlearn-
ing session S𝑖 should have no effect on the unlearned model M𝑢

as if S𝑖 never occurred in D.
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4 METHODOLOGY
In this section, we describe the detail of the proposed SRU frame-
work. As shown in Figure 2, SRU is composed of session partition,
attentive aggregation, and data deletion. The session partition mod-
ule aims to divide the training sessions into disjoint data shards
and then sub-models are trained on each shard. Based on the hid-
den states coming from different sub-models, the attentive aggre-
gation module fuses the hidden states for the final prediction. The
data deletion module aims to improve the unlearning effective-
ness. When an item-level unlearning request comes, the data dele-
tion module first applies extra data deletion strategies to the cor-
responding session. Then only the sub-model and the aggregation
module are retrained, achieving efficient unlearning.

4.1 Session Partition
One keystone to generating the next-item recommendation is
learning signals from similar sessions. To this end, session similar-
ity is important for recommendation accuracy. Consequently, in
the session partition module, similar sessions are expected to be
divided into the same data shard and thus can be trained in one
sub-model. Such a division strategy can help to improve the recom-
mendation performance since it enables more knowledge transfer
within each shard.

To achieve the described division strategy, an additional session-
based recommendation model M𝑝 (e.g., GRU4Rec[15]) is pre-
trained on D to obtain all training sessions’ hidden states firstly.
Then a 𝑘-means clustering method based on the pre-trained hid-
den states is used to divide training sessions. More specifically, the
input of the session partition module includes the pre-trained hid-
den states, the number of partition shards K , and the maximum
number of sessions in each shard 𝛿 . The distance between session
pairs is defined as the Euclidean distance of their hidden states. K
sessions are randomly selected as centroids at first, then distances
between sessions and centroids are calculated. Subsequently, the
sessions are assigned to the shard sequentially according to the
ascending order of distances. If one shard is unavailable (i.e., the
number of sessions within the shard is larger than 𝛿), the next ses-
sion is assigned to the nearest available shard. After that, the new
centroids are calculated as the mean of all sessions’ hidden states
in each corresponding shard. The above process is repeated until
the centroids are no longer updated. Then we obtain the balanced-
partition session as

∩
𝑘∈[K] D𝑘 = ∅ and

∪
𝑘∈[K] D𝑘 = D. Then

sub-models are trained on the data shard separately.

4.2 Attentive Aggregation
Based on the session partition, each sub-model tends to learn a
clustering of similar sequential patterns.The attentive aggregation
module aims to fuse the hidden states from each sub-model for the
final prediction, which consists of a projection layer, an attention
layer, and an output layer.

4.2.1 Projection layer. Given a session we compute its hidden rep-
resentation h𝑘 ∈ R𝑑 using each sub-model M𝑘 trained on D𝑘 .
Since sub-models are trained separately, the hidden representa-
tions could embed in different vector spaces. In order to utilize the

knowledge of every sub-model, we need to project the hidden rep-
resentations into a common space. Specifically, a linear transfer
layer is used to conduct the projection:

h′𝑘 = W𝑘h𝑘 + b𝑘 , (2)

where W𝑘 ∈ R𝑑×𝑑 and b𝑘 ∈ R𝑑 are projection parameters. Note
that each sub-model M𝑘 has a corresponding W𝑘 and b𝑘 .

Besides, the data centroid of D𝑘 is also projected as

c′𝑘 = W𝑘c𝑘 + b𝑘 , (3)

where c𝑘 denotes the original centroid representation computed
from h𝑘 . The data centroid representation is used in the following
attention layer.

4.2.2 Attention layer. The attention layer aims to compute the im-
portance of each sub-model for a given session. [5] also used an at-
tention layer to fuse user and item embeddings for unlearning in
collaborative filtering. However, their method cannot be applied to
session-based recommendation since their attention is solely based
on either user or item embedding. While in the session-based rec-
ommendation, we argue that the attention should be based on the
correlations between the session and the data centroid (i.e., the at-
tention layer should have two input sources corresponding to the
session representation and the centroid representation, as shown
in Figure 2).

To this end, we define the attention score for sub-model M𝑘 as

𝑎𝑘 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (g · 𝑅𝑒𝐿𝑈 (W′ ⊙ (h′𝑘 ⊙ c′𝑘 ) + b′)), (4)

where W′ ∈ R𝑑×𝑓 , b′ ∈ R𝑓 and g ∈ R𝑓 are learnable attention
parameters. 𝑓 is the size of the attention layer. ⊙ denotes element-
wise product and · denotes the inner product.

Based on the attention score, the final representation of a ses-
sion is formulated as

h𝑓 =
K∑
𝑘=1

𝑎𝑘h
′
𝑘 . (5)

4.2.3 Output layer. Based on the final aggregated hidden repre-
sentation h𝑓 , a two-layer feed-forward network with ReLU acti-
vation is used to produce the output distribution over candidate
items. The attentive aggregation module is trained with the cross-
entropy loss over the output distribution.

4.3 Data Deletion
The data deletion module aims to improve the unlearning effec-
tiveness. For an item-level unlearning request, conventional un-
learning methods just remove the unlearning sample, while it is
still possible that the removed sample can be inferred again from
the remaining interactions in the session due to the existence
of sequential connections and collaborative correlations. And for
session-level unlearning request, the unlearned model could still
infer the user’s intent from other similar sessions. To address the
problem, we propose three strategies, namely Collaborative Extra
Deletion(CED), Neighbor Extra Deletion(NED) and Random Extra
Deletion(RED).

From the view of collaborative correlations, we propose CED. In
item-level unlearnling, it deletes extra items based on the similar-
ities between the unlearning item and other items in the session.
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Figure 2: Overview of the proposed SRU framework. SRU is composed of session partition, attentive aggregation and data
deletion modules. The data deletion module includes both session-level and item-level unlearning with extra deletion.

Given the target unlearning item 𝑣𝑖𝑗 in session S𝑖 , the item similar-
ity is calculated according to the Euclidean distance between item
embeddings obtained from the pre-trained model M𝑝 . After that,
the items in the session are sorted by the ascending order of the
distances and the most N similar items are also removed from the
session. Finally, the corresponding sub-model and the aggregation
module are re-trained. The unlearned model can be formalized as

M𝑢 (𝑣 |S′′
𝑖 ,D\S𝑖 ∪ S′′

𝑖 ),where S′′
𝑖 = S𝑖\CED(𝑣𝑖𝑗 ) . (6)

As for sequential connections, NED is proposed to remove the
N nearest items in front of the unlearning item in chronological
order. While in RED, we randomly choose N extra items to delete
within the session.

In session-level unlearning, CED will additionally delete other
conversations that are similar to the session to be forgotten, as
there may be a high degree of similarity between sessions. In line
with the item-level approach, given the target unlearning session
S𝑗 in unlearning session setS𝑢 , the session similarity is calculated
to the Euclidean distance between session hidden states obtained
by the pre-trained modelM𝑝 . And will delete the most similar ses-
sions. Due to the data sparsity, for example, the sparsity of Steam
is 99%, we only use CED method for session-level removal.

4.4 Item-level Unlearning Effectiveness
Evaluation

Item-level unlearning is a common request, for example, a user
may want to hide the click of a sensitive item in a session or may
dislike an item anymore. To this end, if the unlearning is effec-
tive, the unlearned item should not be inferred from the remaining
items in the session or the item should not be recommended to the
user again in the near future.

To this end, we define one unlearning effectiveness evaluation
metric as the hit ratio (i.e., HIT@𝐾 ) which measures whether the
unlearned item would occur in the top-𝐾 recommendation list
based on the remaining interactions in the session using the un-
learned modelM𝑢 . Such the evaluation metric can also be seen as
the performance of a membership inference attack [30] which at-
tempts to infer the unlearning items from the remaining data. If
HIT@𝐾 is high, it means the unlearned item has a high probabil-
ity of being re-recommended or being inferred again. On the con-
trary, a lower HIT@𝐾 implies better unlearning effectiveness.
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Table 1: Statistics of the datasets (after preprocessing).
Dataset #users #items #actions
Amazon Beauty 52,024 57,289 0.4M
Amazon Games 31,013 23,715 0.3M
Steam 334,730 13,047 3.7M

4.5 Session-level Unlearning Effectiveness
Evaluation

For a session-level unlearning, such as a user may want to with-
draw some out of style or unfaithful sessions in the model, we
adopt the approach of directly removing these dialogues from the
training set to obtain the unlearned model M𝑢 .

ME-MIA framework is tailor-made for sequential recommenda-
tion systems. In the detail of the membership inference attack, we
follow [44] to train a target and shadow model separately, and the
target model is exactly the unlearned model M𝑢 we want to ob-
tain. Because we treat the target model as a black-box, so it is nec-
essary to build a surrogatemodelM𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 to simulate the target
model which is called model extraction. Then we use the shadow
model’s training data to train the attack model to be a binary clas-
sifier. To better characterize the features of the given session, a
feature generator is built to construct representative feature vec-
tors from M𝑠ℎ𝑎𝑑𝑜𝑤 and M𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 . Then, the generative feature
vectors are fed into the attack model M𝑎𝑡𝑡𝑎𝑐𝑘 to identify the ses-
sion’s membership. We calculate the accuracy of correctly identi-
fying the unlearning sessions in the attack model.

From ME-MIA, we can obtain an attacker M𝑎𝑡𝑡𝑎𝑐𝑘 for the un-
learned model M𝑢 . Since M𝑎𝑡𝑡𝑎𝑐𝑘 is built from the information
of M𝑢 , if M𝑢 has achieved a better unlearning effectiveness, then
M𝑎𝑡𝑡𝑎𝑐𝑘 should recognize the unlearning sessions as the non-
member better, which means a higher accuracy score.

5 EXPERIMENTS
In this section, we conduct experiments on three benchmark
datasets to verify the effectiveness of SRU. We aim to answer the
following research questions:

RQ1:How is the recommendation performance of SRUwhen in-
stantiated with different session-based recommendation models?

RQ2: How is the unlearning effectiveness of SRU?
RQ3: How is the unlearning efficiency of SRU?

5.1 Experimental Settings
5.1.1 Datasets. Experiments are conducted on three publicly ac-
cessible datasets: Amazon Beauty, Games and Steam. The two Ama-
zon datasets1 are a series of product review datasets crawled from
Amazon.com. In this work, we consider two item categories includ-
ing “Beauty” and “Games”. The Steam dataset2 is collected from a
large online video game distribution platform. For all datasets, we
follow the same data prepossessing as [20]. Table 1 shows the sta-
tistics of the datasets.

5.1.2 Recommendation performance evaluation. We adopt cross-
validation to evaluate the performance of the proposed methods.
The ratio of training, validation, and test set is 8:1:1. We randomly
1https://jmcauley.ucsd.edu/data/amazon/
2https://steam.internet.byu.edu/

sample 80% of the sessions as the training set. For validation and
test sets, The evaluation is done for validation and test sets by
providing the interactions in a session one by one and checking
the rank of the next ground-truth item. The ranking is performed
among the whole item set.

To evaluate recommendation performance, we adopt two com-
mon top-𝐾 metrics: Recall@𝐾 and NDCG@𝐾 . Recall@𝐾 measures
whether the ground-truth item is in the top-𝐾 positions of the rec-
ommendation list [38]. NDCG@𝐾 is a weighted metric that as-
signs higher scores to top-ranked positions [19]. We use the met-
ric HIT described in section 4.4 to evaluate item-level unlearning
effectiveness and Accuracy score described in section 4.5 to evalu-
ate session-level unlearning effectiveness.

5.1.3 Baselines. SRU is implemented with three representative
session-based recommendation models: GRU4Rec [15], SASRec
[20] and BERT4Rec [31].
• GRU4Rec [15]: This method utilizes gated recurrent units

(GRU) to model user interaction sequences.
• SASRec [20]: This model is attention-based and uses the Trans-

former [34] decoder for session-based recommendation.
• BERT4Rec [31]: This model employs deep bidirectional self-

attention to model interaction sequences.
To enable unlearning, every model is trained with:
• Retrain:This method retrains the whole model from scratch on

the remaining dataset. It’s computationally expensive.
• SISA: This is a fundamental exact unlearning method that ran-

domly splits the data and averages the outputs of the sub-model.
• SRU-N: This is SRU with neighbor extra deletion (NED).
• SRU-R: This is SRU with random extra deletion (RED).
• SRU-C: This is SRU with collaborative extra deletion (CED).
Note that we do not compare with RecEraser [5] since it is pro-
posed for non-sequential collaborative filtering and their data par-
tition methods cannot be applied for session-based recommen-
dation since the session-based recommender does not explicitly
model user identifiers.

5.1.4 Hyperparameter settings. The model input is the last 10 in-
teracted items for Beauty, and the last 20 interacted items for
Games and Steam. We pad the sequences with a padding token for
shorter sessions. The Adam optimizer [21] is used to train all mod-
els, with batches of size 256. The learning rate for the aggregation
layer is tuned among [1e-3, 1e-2].The default number of data shard
is set as K = 8. The extra data deletion number for unlearning is
ranged from 1 to 5. The other hyperparameters are set as the rec-
ommended settings of their original papers.

5.2 Recommendation Performance (RQ1)
Table 2 shows the top-𝐾 recommendation performance of different
unlearning methods when 10% random sessions need items to be
unlearned in each shard.

We can see that the proposed SRU always performs better than
SISA even though SRU has removed more training data. This is
because when training data is unlearned, the performance of all
sub-models are degraded for the training data is smaller, while
SRU groups similar sessions in a shard which makes the model

https://jmcauley.ucsd.edu/data/amazon/
https://steam.internet.byu.edu/
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Table 2: Recommendation performance comparison after unlearning 10% of data in each shard. The extra deletion numberN
ranges from 1 to 5. Best results other than Retrain are highlighted in bold. “N” is short for NDCG and “R” is short for Recall.

Beauty GRU4Rec SASRec BERT4Rec

N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20

Retrain 0.0327 0.0382 0.0550 0.0768 0.0399 0.0450 0.0632 0.0835 0.0314 0.0380 0.0558 0.0816
SISA 0.0289 0.0328 0.0460 0.0615 0.0271 0.0307 0.0428 0.0571 0.0259 0.0310 0.0464 0.0666
SRU-R 0.0304 0.0347 0.0489 0.0662 0.0280 0.0323 0.0448 0.0617 0.0292 0.0341 0.0509 0.0704
SRU-C 0.0286 0.0330 0.0468 0.0643 0.0280 0.0320 0.0456 0.0616 0.0293 0.0348 0.0525 0.0743
SRU-N 0.0306 0.0346 0.0506 0.0668 0.0274 0.0312 0.0440 0.0591 0.0291 0.0346 0.0507 0.0726

Steam GRU4Rec SASRec BERT4Rec

N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20

Retrain 0.0495 0.0631 0.0947 0.1489 0.0539 0.0679 0.1016 0.1574 0.0593 0.0742 0.1116 0.1711
SISA 0.0471 0.0601 0.0898 0.1412 0.0457 0.0581 0.0863 0.1357 0.0482 0.0615 0.0932 0.1460
SRU-R 0.0490 0.0621 0.0924 0.1444 0.0485 0.0614 0.0914 0.1431 0.0577 0.0722 0.1077 0.1652
SRU-C 0.0484 0.0616 0.0916 0.1445 0.0476 0.0604 0.0901 0.1411 0.0576 0.0720 0.1075 0.1648
SRU-N 0.0480 0.0612 0.0916 0.1442 0.0480 0.0608 0.0906 0.1414 0.0567 0.0710 0.1067 0.1636

Games GRU4Rec SASRec BERT4Rec

N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20

Retrain 0.0401 0.0495 0.0747 0.1122 0.0479 0.0580 0.0864 0.1268 0.0474 0.0596 0.0921 0.1406
SISA 0.0324 0.0377 0.0564 0.0776 0.0267 0.0318 0.0459 0.0661 0.0322 0.0402 0.0629 0.0948
SRU-R 0.0357 0.0424 0.0621 0.0887 0.0333 0.0405 0.0596 0.0883 0.0395 0.0497 0.0752 0.1159
SRU-C 0.0342 0.0410 0.0614 0.0887 0.0314 0.0378 0.0570 0.0824 0.0363 0.0462 0.0690 0.1084
SRU-N 0.0352 0.0424 0.0620 0.0909 0.0321 0.0393 0.0566 0.0851 0.0384 0.0488 0.0730 0.1146

Table 3: Session-level unlearning effectiveness comparison.
Higher scores denote better results.The best results are high-
lighted in bold.

Beauty GRU4Rec SASRec BERT4Rec

Accuracy AUC Accuracy AUC Accuracy AUC
Retrain 0.7487 0.6048 0.7661 0.7357 0.9054 0.6977
SISA 0.7412 0.5821 0.7487 0.5421 0.8743 0.5419
SRU 0.7688 0.6959 0.794 0.7552 0.9196 0.7049
SRU-C 0.8040 0.7181 0.8091 0.7275 0.9347 0.7689

Steam GRU4Rec SASRec BERT4Rec

Accuracy AUC Accuracy AUC Accuracy AUC
Retrain 0.4081 0.5757 0.5077 0.5535 0.4472 0.5447
SISA 0.4050 0.5757 0.4992 0.5348 0.4102 0.5662
SRU 0.5085 0.5751 0.5242 0.5771 0.5507 0.5038
SRU-C 0.5314 0.5999 0.5371 0.5986 0.5662 0.5766

Games GRU4Rec SASRec BERT4Rec

Accuracy AUC Accuracy AUC Accuracy AUC
Retrain 0.6438 0.6797 0.7397 0.6476 0.7808 0.6123
SISA 0.5734 0.5718 0.6783 0.5633 0.7762 0.5536
SRU 0.6433 0.6091 0.7482 0.7026 0.8182 0.6344
SRU-C 0.6853 0.6526 0.7692 0.7137 0.8741 0.5798

share more collaborative information to gain better recommenda-
tion performance. And it makes sense that Retrain always gets the
highest scores for it can retrain the whole model on all remaining
data, but sacrifices efficiency.

5.3 Unlearning Effectiveness (RQ2)
In this part, we conduct experiments to evaluate the unlearning
effectiveness of different methods.

For item-level unlearning, we randomly unlearn 10% of data
and set the extra deletion number N from 1 to 5. Table 4 shows
the item-level unlearning effectiveness comparison on Beauty and
Steam datasets. The results in the Games dataset show a similar
conclusion. Firstly, we can see that even if the unlearning item is
removed, there is a probability (e.g., more than 10% on the Steam
dataset) that the item can be inferred again from the remaining
interactions in the session. This observation verifies that conven-
tional exact unlearning methods cannot achieve exact unlearning
effects in the session-based recommendation scenario. Besides, we
can see that the proposed SRU-R, SRU-C and SRU-N achieve better
unlearning effectiveness compared with Retrain and SISA. For ex-
ample, on the GRU4Rec model and trained on the Beauty dataset,
the HIT@1 for SRU is 0.0577, while for Retrain is 0.0764. The ob-
servation indicates that the proposed data deletion module is es-
sential for unlearning effectiveness. What’s more, SRU-C and SRU-
N achieve stable unlearning effectiveness improvement since they
can help to eliminate the effect of collaborative correlations and
sequential connections correspondingly, while SRU-R removes ex-
tra data randomly and has a more varied performance.

For session-level unlearning, we randomly unlearn 1% of data
and Table 4 shows the accuracy of attackmodel’s prediction for un-
learning data. AUC score is the area under the ROC curve which
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Table 4: Unlearning effectiveness comparison. Lower scores denote better results. The best results are highlighted in bold.

Beauty GRU4Rec SASRec BERT4Rec

HIT@1 HIT@5 HIT@10 HIT@20 HIT@1 HIT@5 HIT@10 HIT@20 HIT@1 HIT@5 HIT@10 HIT@20
Retrain 0.0764 0.1715 0.2294 0.3052 0.0619 0.1566 0.2123 0.2807 0.0700 0.1588 0.2080 0.2739
SISA 0.0685 0.1654 0.2244 0.3074 0.0681 0.1605 0.2222 0.3091 0.0763 0.1730 0.2321 0.3119
SRU-R 0.0675 0.1561 0.2122 0.2809 0.0625 0.1468 0.2042 0.2697 0.0720 0.1573 0.2131 0.2798
SRU-C 0.0577 0.1335 0.1824 0.2510 0.0593 0.1429 0.1970 0.2666 0.0661 0.1516 0.2058 0.2689
SRU-N 0.0643 0.1533 0.2028 0.2731 0.0605 0.1482 0.2039 0.2736 0.0638 0.1527 0.2054 0.2759

Steam GRU4Rec SASRec BERT4Rec

HIT@1 HIT@5 HIT@10 HIT@20 HIT@1 HIT@5 HIT@10 HIT@20 HIT@1 HIT@5 HIT@10 HIT@20
Retrain 0.1581 0.3992 0.5372 0.6805 0.1411 0.3636 0.4975 0.6483 0.1159 0.3292 0.4701 0.6309
SISA 0.1582 0.3979 0.5349 0.6775 0.1410 0.3646 0.4959 0.6365 0.1166 0.3282 0.4668 0.6184
SRU-R 0.1545 0.3954 0.5319 0.6739 0.1412 0.3687 0.5020 0.6417 0.0992 0.2979 0.4282 0.5749
SRU-C 0.1499 0.3882 0.5241 0.6702 0.1389 0.3686 0.5041 0.6475 0.1036 0.3088 0.4407 0.5901
SRU-N 0.1461 0.3799 0.5136 0.6568 0.1138 0.3186 0.4422 0.5812 0.0957 0.2897 0.4205 0.5713

Table 5: Comparison of unlearning efficiency (minute [m]). The best results are highlighted in bold.
Dataset Beauty Games Steam

Method GRU4Rec SASRec BERT4Rec GRU4Rec SASRec BERT4Rec GRU4Rec SASRec BERT4Rec
Retrain 46.80m 55.60m 55.76m 31.22m 29.91m 31.14m 274.67m 368.99m 296.89m

SRU
Sub-model 5.80m 5.07m 7.44m 3.76m 4.75m 4.80m 33.67m 36.78m 34.07m
Aggregation 0.72m 6.05m 5.53m 1.78m 4.40m 3.87m 25.30m 62.53m 64.30m
Total 6.52m 11.12m 12.97m 5.54m 9.15m 8.67m 58.97m 99.31m 98.37m

is widely used in binary classifcation problems due to its insensi-
tivity to the label distribution of the dataset and we use it to ver-
ify the attack model’s effectiveness. Higher AUC score means the
attack model has a better ability to valid data for members and
non-members respectively. In this experiment setting, if the un-
learning session has been removed from the unlearned modelM𝑢

more complete, then the attack model can recognize the unlearn-
ing session as non-member better which means a higher accuracy.
We can observe that SRU-C has the highest Accuracy scores with a
reasonable AUC score in all datasets and models which means that
it has better unlearning effectiveness. For example, on Games and
BERT4Rec, the Accuracy is 0.7808 for Retrain and 0.8741 for SRU-
C, the improvement is 11.9% and the comparison between SRU-C
and SISA is more obvious. This means that extra deletion method
does help the model to achieve more complete oblivion.

To conclude, the proposed SRU achieves the highest unlearning
effectiveness in both item-level and session-level, even better than
Retrain.

5.4 Unlearning Efficiency (RQ3)
Table 5 shows the training time comparison between Retrain and
SRU. We evaluate them both on NVIDIA GeForce RTX 2080 Ti
and set the shard number to 8. Especially the retraining time of
SRU consists of sub-model training and aggregation module train-
ing. From Table 5, we can find that SRU performs much more effi-
ciently than Retrain. In most cases, SRU is more than three times
faster than Retrain. For example, on Beauty and BERT4Rec, Re-
train needs 55.76 minutes, but our SRU only needs 12.97 minutes.

The efficiency improvement is more significant on the larger Steam
dataset. For example, on Steam and SASRec, Retrain needs 368.99
minutes, but our SRU only needs 99.31 minutes, the improvement
reaches 3.71x optimisation.

6 CONCLUSION
In this paper, we have proposed a model-agnostic unlearning
framework SRU for session-based recommendation. We firstly di-
vide unlearning requests into item-level and session-level. For an
item-level unlearning request, SRU utilizes three data deletion
strategies, including collaborative extra deletion (CED), neighbor
extra deletion (NED), and random extra deletion (RED), to ensure
the unlearned items cannot be inferred again from the remain-
ing items in the session. And for session-level unlearning request,
SRU is equipped with CED due to the high sparsity of the real
dataset. Then we have retrained corresponding sub-model and the
aggregation module for efficient unlearning. We have utilized a
similarity-based session partition module and an attentive aggre-
gation module to improve the recommendation performance in
SRU. Besides, we have further defined an evaluation metric and
adopt MIA to evaluate the unlearning effectiveness of the session-
based recommendation.We have implemented SRUwith three rep-
resentative session-based recommendation models and conducted
experiments on three benchmark datasets. Experimental results
have demonstrated the superiority of our proposed methods. For
future work, we plan to investigate the trade-off between unlearn-
ing effectiveness, recommendation performance, and unlearning
efficiency which is also an interesting future topic.
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