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Abstract
Shared accounts are not uncommon in some applications, which
can breed spurious associations between items that are actually
consumed by distinct members. This may adversely affect the rec-
ommendations for other single-user accounts, which remains unex-
plored. To reveal this problem, we present a fair comparison of the
recommendation performance for the same subset of single-user
accounts under two settings: A controlled setting with only single-
user accounts, and an experimental setting with both single-user
accounts and shared accounts. The results show that the presence
of shared accounts can lead to a performance decrease of up to
10%–40% for other single-user accounts. To gain deeper insights,
we define two quantitative metrics to analyze the changes in the
proximity of demoted relevant items and promoted irrelevant items
to the user’s consumed items in the latent space. The results show
that the performance degradation can be attributed to the distortion
of proximity relations between item embeddings. To mitigate the
performance degradation, we leverage the multimodal information
of items to construct a reliable item-item semantic graph which is
fused with the bipartite behavior graph to counterbalance spurious
second-order item-item associations arising from shared accounts.
The results show that our mitigation method can effectively alle-
viate the performance degradation for other single-user accounts
caused by shared accounts, recovering or even surpassing the rec-
ommendation performance in the controlled setting without shared
accounts.
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1 Introduction
Collaborative filtering (CF) is a widely used approach to making
personalized recommendations in many systems. It assumes that
each account is used by a single user and that individuals who
have exhibited similar preferences for certain items in the past are
likely to share preferences for other items in the future. However,
there exist many shared accounts in some applications. For example,
multiple people use the same IPTV [2, 12] or share a VIP account
in a web service. CF algorithms may fail in this circumstance. Fig. 1
shows a toy example. Let 𝑢 be a single-user account owned by
a single man who enjoys watching science fiction movies, and 𝑎
denote a shared account consisting of the behavior of a father and
a son, with the father favoring science fiction movies and the son
preferring cartoons. Based on the fact that 𝑢 and 𝑎 have consumed
several common items, and science fiction movies and cartoons
co-occur in the consumption history of many shared accounts,
CF algorithms may incorrectly recommend some animations to
the single-user account 𝑢 . Therefore, shared accounts may have
an adverse impact on the recommendation performance for other
single-user accounts in the system.

     COCO UpTom & JerryInterstellar Inception The Matrix
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Figure 1: Illustration of the impact of a shared account on
another single-user account

Although a few studies attempt to differentiatemultiple members
in a shared account using additional contextual information such
as temporal factors [27, 32], the underlying assumption that the
behavior of distinct members differs along a certain contextual
dimension may not hold universally. Moreover, it is difficult to
verify the accuracy of user identification, since which member
invokes each interaction can hardly be recorded in many systems.
Although different users can be identified via device IDs [20], mobile
sensors [16], or other means such as face verification, it may not
be applicable or widely adopted by users in some scenarios, for
example, video streaming service on smart TV. Existing algorithmic
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studies [22, 24] only report the overall average recommendation
performance, overlooking the coexistence and distinction of single-
user accounts and shared accounts in a system. Hence, the adverse
impact of shared accounts on other single-user accounts remains
unexplored. To fill this gap, our research objective is to reveal,
analyze, and mitigate the adverse impact of shared accounts on
personalized recommendations for other single-user accounts in
an environment with both types of accounts.

Revealing Phase. It is hard to quantitatively reveal the adverse im-
pact of shared accounts on other single-user accounts, as we cannot
know how a model performs for the same user in two counterfac-
tual settings with and without shared accounts. We overcome this
problem by simulating two settings with the same test set as shown
in Fig. 2. The controlled setting has only single-user accounts, while
the experimental setting includes both single-user accounts and
shared accounts. Shared accounts are synthesized without altering
the data sparsity. A fair comparison reveals that the recommen-
dation performance for single-user accounts significantly declines
with the presence of shared accounts.

Analysis Phase. We conjecture that shared accounts have a detri-
mental effect on item embeddings that are vital for recent model-
based CF [17]. However, it remains unexplored how to analyze the
changes of item embeddings between two settings. To this end, we
identify the subset of demoted relevant items and promoted irrel-
evant items by comparing the recommendation lists for the same
user under two settings. For every such item, we examine changes
in its proximity to the user’s consumed items in the latent space,
measured by its relative positions in the K-nearest neighborhood.
The analysis confirms that the performance degradation can be
attributed to the distortion of proximity relations between item
embeddings in the experimental setting with shared accounts.

Mitigating Phase. To mitigate performance degradation, the key
is how to deal with spurious second-order associations between a
pair of items consumed by two members with distinct interests in
a shared account. Note that the edge between the shared account
and either of them is not noise and hence cannot be removed. We
circumvent this issue by leveraging the multimodal information of
items that provides valuable clues about their semantic relations.
Specifically, we construct a reliable item-item KNN graph from
the multimodal data and integrate it with the bipartite behavior
graph. During representation learning, these first-order semantic
relations can counteract spurious second-order associations caused
by shared accounts. Experimental results validate its efficacy in
ameliorating the proximity relations between item embeddings and
alleviating performance degradation for single-user accounts.

Our contributions are summarized as follows.

• We point out a problem that shared accounts can adversely
affect personalized recommendations for other single-user
accounts in a system.
• We design two settings with the same test set for a fair com-
parison: a controlled setting with only single-user accounts,
and an experimental setting with both single-user accounts
and shared accounts. Meanwhile, shared accounts are syn-
thesized without changing the data sparsity.

• We define two quantitative metrics for analyzing the detri-
mental effect of shared accounts on the proximity relations
between item embeddings.
• We design a mitigation method by constructing a reliable
item-item KNN graph from the multimodal item information
to counteract spurious second-order item-item associations
mediated by shared accounts in the bipartite behavior graph.
• We observe a marked performance decline for single-user
accounts in the setting with shared accounts. This can be
attributed to the distortion of item proximity relations and
mitigated by the item-item KNN graph derived from the
multimodal item information.

2 Related work
2.1 Typical recommendation algorithms
Recommendation algorithms can roughly be categorized into collab-
orative filtering (CF) [21] and content-based filtering [19]. Recent
CF methods include neural CF [8] and graph-based CF [1, 7, 13],
which learn latent representations for users and items using only
the user-item interaction matrix. A recent paradigm of content-
based filtering is multimodal recommendation, which leverages
the visual/textual content of items to enhance the item representa-
tions and user interest modeling. For example, VBPR [6] extends
classical BPR [21] by incorporating the user’s preference towards
the item’s visual features. [29] proposed to learn modality-specific
user preference by feeding pre-extracted modality features of items
into the initial embedding layer of a graph convolution network.
In addition, noisy user-item edges can be pruned softly according
to modality-specific user-item affinity scores [28]. [37] proposed
an inter-modality feature alignment loss that aligns the item ID
embedding with its multimodal features, encouraging the ID em-
beddings of items with similar multimodal features get close to each
other. However, the above methods all assume that each account
is used by a single user. We attempt to reveal the adverse impact
caused by shared accounts and explore a viable mitigation method
by exploiting the multimodal information of items.

2.2 Shared account recommendation
A common approach to personalized recommendations for shared
accounts involves two phases: user identification and item rec-
ommendation. [9, 10, 27] split historical interactions into several
subprofiles or clusters, assuming that different members exhibit
distinct temporal habits and preferences. However, the number
of members in a shared account is unknown, and the assumption
may not hold universally. Verstrepen and Goethals [24] proposed
an item-based CF solution for shared accounts in the absence of
contextual information. Several recent works [3, 4, 11, 30] have
explored session-based or sequential recommendation in scenar-
ios with shared accounts by learning multiple latent role/persona
representations. However, these studies overlook the co-existence
of shared accounts and single-user accounts, leaving the impact of
shared accounts on single-user accounts remain unexplored.

2.3 Recommendation performance degradation
Several factors can lead to performance degradation in recom-
mender systems, such as data sparsity, noisy feedback, incoherent
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preference [5, 12, 36], andmalicious attacks [25, 33, 34]. In this study,
we show that shared accounts can adversely affect the recommen-
dation performance for other single-user accounts by introducing
spurious item-item associations. Unlike noisy feedback [23, 26]
or fake co-visitation attack [14, 31], these spurious associations
arise naturally from true historical interactions in shared accounts
with no malicious intent. Understanding how CF algorithms per-
form in environments with both single-user accounts and shared
accounts is crucial for improving the robustness [35] and fairness
of recommender systems.

3 Revealing the adverse impact on
recommendation performance

3.1 Experiment design
3.1.1 Controlled setting vs. experimental setting. To reveal the im-
pact of shared accounts on the recommendation performance for
other single-user accounts, we design two settings for a fair com-
parison, as shown in Fig. 2. In the controlled setting, all accounts
inU1 ∪U2 are single-user accounts. In the experimental setting,
there exist both single-user accounts and shared accounts. The in-
teraction data for each account inU1 remains unchanged, while
the accounts inU2 are used to synthesize shared accounts in A ,
where each account contains a mixing of the interaction data of
two users.
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Figure 2: Experiment design: controlled setting vs. experi-
mental setting

The test set is the same in both settings. For each𝑢 ∈ U1 , 20% of
consumed items are withheld as the test set T𝑢 , another 20% for val-
idation, and the rest for training. The same recommendation model

is trained, which may produce different top-N recommendations
for the same user 𝑢 ∈ U1 , denoted as L𝑆

𝑢 and L𝐴
𝑢 in the controlled

setting and experimental setting, respectively. By evaluating the
performance of L𝑆

𝑢 and L𝐴
𝑢 according to T𝑢 , we can reveal the

impact of shared accounts in A on single-user accounts inU1 .

3.1.2 Synthesizing shared accounts. In real-world applications, there
exist some common membership patterns in shared accounts, such
as couples, elderly individuals and children, etc. When there exist
a lot of shared accounts with the same membership pattern, there
might emerge strong spurious associations between a few items.
In addition, some weak noisy item-item associations might also
emerge among several items.

Definition 3.1. A fake co-occurrence refers to the fact that al-
though two items co-occur in a shared account, they are actually
consumed by distinct members using the shared account.

Definition 3.2. Strong spurious item-item association means that
the two items are dissimilar but there existmany fake co-occurrences
of them in many shared accounts.

Definition 3.3. Weak noisy item-item association means that
there are occasional fake co-occurrences of the two items in a few
shared accounts.

Existing work [24] adopted a simple method for synthesizing
shared accounts, which merges the interaction history of two ran-
domly selected users into an account. This method has two limita-
tions. (1) It fails to well simulate strong spurious item-item associ-
ations introduced by shared accounts, due to insufficient fake co-
occurrences between a given pair of dissimilar items. (2) It changes
the data sparsity since the number of accounts is reduced but the
number of observed interactions remains the same. Note that the
data sparsity has a great influence on recommendation performance,
which may interfere with the impact caused by shared accounts.
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Figure 3: Illustration of the procedure for synthesizing shared
accounts such that there emerges a fake co-occurrence of
items 𝑖 and 𝑗 in one of the synthetic shared accounts and the
data sparsity keeps the same

We design a novel procedure for synthesizing shared accounts,
which is detailed in Appendix A. To simulate strong spurious asso-
ciations between a pair of dissimilar items 𝑖 and 𝑗 , we first identify
the subset of users in U2 who have consumed either 𝑖 or 𝑗 but
not both, denoted as U′

𝑖
and U′

𝑗
respectively. Then for a pair of

users 𝑢 ∈ U′
𝑖
and 𝑣 ∈ U′

𝑗
, we swap a portion of their interacted

items to form two synthetic shared accounts 𝑎 and 𝑏 such that
there emerges a fake co-occurrence of 𝑖 and 𝑗 in one of them (e.g.,
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𝑏), as shown in Fig. 3. The spurious association between 𝑖 and 𝑗
becomes stronger after repeating the mixing operation for more
user pairs inU′

𝑖
×U′

𝑗
. The data sparsity keeps the same as in the

controlled setting. In this way, we can exclude the interference of
data sparsity and draw convincing results regarding the impact of
shared accounts on other single-user accounts.

3.1.3 The recommendation model. We adopt LightGCN [7] as the
recommendation model in two different settings. The reason is
twofold: It is a strong competitor among various CF methods; it
can model high-order item-item associations. In our experiments,
the number of graph convolution layers was set to 2 such that it
can model second-order item-item associations in shared accounts.
The embedding dimension was set to 64, the learning rate was set
to 0.001, and NDCG@20 was used as the early stop metric.

3.2 Quantitative comparison results
We conducted experiments on three public datasets: Clothing Shoes
& Jewelry (Clothing for short), Beauty, andMicroLens. The Clothing
and Beauty datasets1 contain user shopping records, reviews, and
product metadata. The multimodal features are also provided [15]:
4096-dimensional visual features, and 1024-dimensional textual fea-
tures extracted by a sentence transformer. The MicroLens dataset2
contains user interactions with micro-videos, user comments and
video images. We use the multimodal features pre-processed by Ni
et al. [18]. Table 1 shows the dataset statistics after 5-core filtering.

Table 1: Dataset statistics

Dataset Clothing Beauty MicroLens

# of users 39387 22363 5936
# of items 23033 12101 12414
# of interactions 278677 198502 123368
Sparsity 99.97% 99.92% 99.83%

Table 2 shows a comparison of the recommendation performance
for the same single-user accounts inU1 under the controlled set-
ting vs. the experimental setting. The number of item pairs with
strong spurious association 𝑝 was set to 50, the proportion of shared
accounts 𝜌 and the mixing ratio 𝜀 were set to 0.5 (cf. Alg. 1 in Ap-
pendix A). We can observe a significant performance decrease in
the experimental setting across three datasets, indicating that the
presence of shared accounts has a considerable adverse impact on
the recommendation performance for other single-user accounts.

4 Analyzing the adverse impact on item
embeddings

For each user 𝑢 ∈ U1, let 𝜋
(
L𝑆
𝑢 , 𝑖

)
and 𝜋

(
L𝐴
𝑢 , 𝑖

)
be the rank

positions of item 𝑖 in the recommendation lists in the controlled
setting and experimental setting respectively. We can identify the
following two types of items that cause the performance decline.

1https://github.com/sisinflab/Formal-MultiMod-Rec/tree/main/data
2https://recsys.westlake.edu.cn/MicroLens-Fairness-Dataset/

Table 2: Comparison of the recommendation performance
for single-user accounts in the controlled setting vs. in the
experimental setting

Dataset Metric Control Experiment Decrease↓
Recall@10 0.0269 0.0168 37.55%
Recall@20 0.0403 0.0240 40.45%
NDCG@10 0.0168 0.0108 35.71%Clothing

NDCG@20 0.0208 0.0130 37.50%

Recall@10 0.0795 0.0640 19.50%
Recall@20 0.1164 0.0927 20.36%
NDCG@10 0.0508 0.0416 18.11%Beauty

NDCG@20 0.0623 0.0505 18.94%

Recall@10 0.0371 0.0319 14.02%
Recall@20 0.0632 0.0560 11.39%
NDCG@10 0.0340 0.0285 16.18%MircoLens

NDCG@20 0.0447 0.0382 14.54%

Definition 4.1. The demoted relevant items T ↓𝑢 are defined as
the subset of relevant items in L𝑆

𝑢 that is ranked at a later position
in L𝐴

𝑢 compared to its position in L𝑆
𝑢 .

T ↓𝑢 =

{
𝑖 ∈ L𝑆

𝑢 | 𝑖 ∈ T𝑢 ∧ 𝜋
(
L𝑆
𝑢 , 𝑖

)
≺ 𝜋

(
L𝐴
𝑢 , 𝑖

)}
.

Definition 4.2. The promoted irrelevant items L↑𝑢 are defined
as the subset of irrelevant items in L𝐴

𝑢 that is ranked at an earlier
position compared to its position in L𝑆

𝑢 .

L↑𝑢 =

{
𝑖 ∈ L𝐴

𝑢 | 𝑖 ∉ T𝑢 ∧ 𝜋
(
L𝐴
𝑢 , 𝑖

)
≺ 𝜋

(
L𝑆
𝑢 , 𝑖

)}
.

4.1 K-nearest neighbors in the latent space
To explore the reason for performance decline, we focus on the
demoted relevant items T ↓𝑢 and promoted irrelevant items L↑𝑢 , and
analyze their proximity to the set of items I𝑢 consumed by 𝑢 in the
latent space. This could shed light on how the performance decline
is related to changes in the item embeddings.

Given an item 𝑗 ∈ I𝑢 , let N𝑆
𝑗
and N𝐴

𝑗
denote the 𝐾 nearest

neighbors of the item embedding e𝑗 in the controlled setting and
experimental setting respectively. We define 𝜋

(
N𝑆

𝑗
, 𝑖

)
as the rank

position of item 𝑖 in N𝑆
𝑗
according to its dot product with e𝑗 .

𝜋

(
N𝑆

𝑗 , 𝑖

)
=


rank

(
N𝑆

𝑗
, 𝑖

)
, 𝑖 ∈ N𝑆

𝑗
;

+∞ , 𝑖 ∉ N𝑆
𝑗
.

(1)

Similarly, let 𝜋
(
N𝐴

𝑗
, 𝑖

)
denote the rank of item 𝑖 inN𝐴

𝑗
. By compar-

ing 𝜋
(
N𝑆

𝑗
, 𝑖

)
and 𝜋

(
N𝐴

𝑗
, 𝑖

)
, we define the following two quantities:

Push (𝑖,I𝑢 ) =
���{ 𝑗 ∈ I𝑢 | 𝜋 (

N𝑆
𝑗 , 𝑖

)
≺ 𝜋

(
N𝐴

𝑗 , 𝑖

)}��� ; (2)

Pull (𝑖,I𝑢 ) =
���{ 𝑗 ∈ I𝑢 | 𝜋 (

N𝑆
𝑗 , 𝑖

)
≻ 𝜋

(
N𝐴

𝑗 , 𝑖

)}��� . (3)

Intuitively, Push (𝑖,I𝑢 ) counts the number of times that item 𝑖 is
pushed away from the K-nearest neighborhood of any item 𝑗 ∈ I𝑢
in the experimental setting; Pull (𝑖,I𝑢 ) is equal to the number of

https://github.com/sisinflab/Formal-MultiMod-Rec/tree/main/data
https://recsys.westlake.edu.cn/MicroLens-Fairness-Dataset/
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times that item 𝑖 is pulled closer to the K-nearest neighborhood
of any item 𝑗 ∈ I𝑢 . Note that if 𝑖 ∉ N𝑆

𝑗
and 𝑖 ∉ N𝐴

𝑗
, 𝜋

(
N𝑆

𝑗
, 𝑖

)
=

𝜋

(
N𝐴

𝑗
, 𝑖

)
= +∞ . In these cases, we do not take 𝑗 into account when

calculating Equations 2 and 3.
Thenwe define the following two ratios by comparing Push (𝑖,I𝑢 )

and Pull (𝑖,I𝑢 ) .

ratio_push =

∑
𝑢∈U

∑
𝑖∈T↓𝑢

I (Push (𝑖,I𝑢 ) > Pull (𝑖,I𝑢 ))∑
𝑢∈U

���T ↓𝑢 ��� ; (4)

ratio_pull =

∑
𝑢∈U

∑
𝑖∈L↑𝑢

I (Push (𝑖,I𝑢 ) < Pull (𝑖,I𝑢 ))∑
𝑢∈U

���L↑𝑢 ��� . (5)

For a demoted relevant item 𝑖 ∈ T ↓𝑢 , if Push (𝑖,I𝑢 ) > Pull (𝑖,I𝑢 ) ,
it is pushed away from the K-nearest neighborhood of more items
in I𝑢 ; and reversely, for a promoted irrelevant item 𝑖 ∈ L↑𝑢 , if
Push (𝑖,I𝑢 ) < Pull (𝑖,I𝑢 ) , it is pulled closer to the K-nearest neigh-
borhood of more items in I𝑢 in the experimental setting.

4.2 KNN analysis results
We calculated the ratios defined in Equations 4 and 5 on three
datasets. As shown in Table 3, the ratios are much higher than
0.5. These results indicate that the majority of demoted relevant
items are pushed away from the K-nearest neighborhood of more
items consumed by the user, and a large proportion of promoted
irrelevant items are pulled closer to the K-nearest neighborhood of
more items consumed by the user in the experimental setting. In
other words, the proximity relations between item embeddings are
greatly distorted due to the existence of shared accounts.

Table 3: KNN analysis of item embeddings

Dataset K ratio_push ratio_pull

Clothing
10 0.8665 0.8648
20 0.8660 0.8578
50 0.8861 0.8455

Beauty
10 0.8290 0.8375
20 0.8306 0.8310
50 0.8357 0.8208

MicroLens
10 0.7891 0.7543
20 0.8410 0.7676
50 0.9014 0.7910

5 Mitigating the adverse impact by leveraging
the multimodal information

The distortion of proximity relations between item embeddings
can be attributed to spurious or noisy second-order item-item as-
sociations introduced by shared accounts. According to the neigh-
borhood aggregation function of LightGCN, the second-order as-
sociation strength for an item pair can be calculated as 𝑐𝑖, 𝑗 =

1√
|U𝑖 |

√︃
|U𝑗 |

∑
𝑢∈U𝑖∩U𝑗

1
| I𝑢 | . Due to fake item-item co-occurrences

in shared accounts, the set of accounts who have consumed both
items 𝑖 and 𝑗 vary across the controlled setting and the experimen-
tal setting. To alleviate the detrimental effect on representation
learning, we resort to the multimodal information of items which
provides value clues about their semantic relations and is not con-
taminated by fake item-item co-occurrences in shared accounts.

5.1 Our mitigation method
Fig. 4 shows the workflow of our mitigation method. The core is to
construct a reliable item-item KNN graph from the multimodal item
data that can counteract spurious second-order item-item associ-
ations in the bipartite behavior graph caused by shared accounts.
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Figure 4: The workflow of our mitigation method

Firstly, we utilize a pre-trained text/image encoder to obtain the
multimodal features for each item, denoted as e𝑚

𝑖
. Then we can

construct an item-item semantic graph, where the edge weight
between items 𝑖 and 𝑗 is defined by the semantic similarity between
their textual/visual features:

𝑆𝑚𝑖,𝑗 =
e𝑚
𝑖
⊤e𝑚

𝑗

∥e𝑚
𝑖
∥∥e𝑚

𝑗
∥ . (6)

Considering that not all semantic relations between items are useful
for recommendation, especially those pairs with small semantic
similarity, for each item 𝑖 , we only preserve the edges with its 𝐾
most similar items.

𝑆𝑚𝑖,𝑗 =

{
1, 𝑆𝑚

𝑖,𝑗
∈ top-𝐾

(
S𝑚
𝑖, :

)
,

0, otherwise .
(7)

𝐾 is empirically set to 10 in our experiment. In this way, we can
derive a reliable and sparse item-item semantic graph from their
multimodal information.

Then we integrate the item-item KNN graph with the bipartite
behavior graph, yielding a fused graph that adds a few reliable
semantic edges on the item side. The corresponding adjacency
matrix can be formulated as

A =

(
0 R
R⊤ S̃𝑚

)
. (8)

R ∈ {0, 1} |U1∪A|×|I | indicates whether account 𝑢 has interacted
with item 𝑖 . S̃𝑚 ∈ {0, 1} | I |× |I | encodes the reliable semantic rela-
tions between items derived from the multimodal item information.
The upper-left block remains zero, as there are no explicit social
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relations between the accounts in some systems and the preference
similarities involving shared accounts are noisy.

Finally, we stack multiple light graph convolution layers on the
fused graph. In each layer, the representation for each item not only
depends on the representations for accounts that have interacted
with the item, but also directly aggregates the representations of
first-order semantically similar items which can counterbalance
the detrimental effect of second-order spurious item-item associ-
ations. The final embeddings E ∈ R( |U1∪A|+|I |)×𝑑 are obtained
by averaging across all layers and used to calculate the predicted
scores by dot product.

5.2 Alleviating the performance degradation
To validate the effectiveness of our mitigation method, we trained
two new LightGCN models by incorporating an item-item KNN
graph constructed from either image features or text features in
the experimental setting with shared accounts. Table 4 reports the
recommendation performance for single-user accounts inU1 .

We can draw the following conclusions. (1) Ourmitigationmethod
effectively alleviates the performance degradation for single-user
accounts in the experimental setting, using either image (i.e., Ours-
V) or text features (i.e., Ours-T). This can be attributed to the reliable
item-item semantic relations from the image/text modality, which
can counteract spurious second-order item-item associations dur-
ing graph convolution. (2) Leveraging text features yields better
results than using image features on three datasets. Perhaps item
images also contain noisy visual features, while text features better
capture the item semantic relations. (3) Our mitigation method also
outperforms other multimodal recommendation models in the ex-
perimental setting, including VBPR [6], MMGCN [29], GRCN [28]
and BM3 [37]. Although they also consider the multimodal item
information, they mainly model the user-item bipartite graph, and
hence are not robust to spurious second-order item-item associa-
tions incurred by shared accounts. In contrast, our method explicitly
integrates an item-item graph derived from textual/visual features,
which is conductive to counterbalancing those spurious associ-
ations. (4) On the Clothing dataset, our method achieves larger
improvement, even surpassing performance in the controlled set-
ting. This is likely because the most sparse Clothing dataset benefits
more from the reliable item-item semantic relations derived from
the multimodal item information.

Fixing the rank changes. We also conducted further analysis to
see whether our mitigation method can fix the rank changes of
demoted relevant items T ↓𝑢 and promoted irrelevant items L↑𝑢 in
the experimental setting. Let L𝐴

𝑢 denote the recommendation list
for user 𝑢 in the experimental setting as before, and L𝑀

𝑢 be the rec-
ommendation list for user 𝑢 after exploiting our mitigation method
by using the text features of items. We calculated the following two
metrics:

fix_demot =

∑
𝑢∈U

∑
𝑖∈T↓𝑢

1
log2 (𝜋 (L𝑀

𝑢 ,𝑖)+1) −
1

log2 (𝜋 (L𝐴
𝑢 ,𝑖)+1)∑

𝑢∈U
���T ↓𝑢 ��� ;

(9)

fix_promo =

∑
𝑢∈U

∑
𝑖∈L↑𝑢

1
log2 (𝜋 (L𝑀

𝑢 ,𝑖)+1) −
1

log2 (𝜋 (L𝐴
𝑢 ,𝑖)+1)∑

𝑢∈U
���L↑𝑢 ��� .

(10)
The results are reported in Table 5. For demoted relevant items

T ↓𝑢 , the values of fix_demot are positive, indicating that they are
moved forward in the recommendation list by ourmitigationmethod.
For promoted irrelevant items L↑𝑢 , the values of fix_promo are
negative, indicating that they are moved backward in the recom-
mendation list. Thus, our mitigation method can counteract the
adverse impact of shared accounts on recommendation lists for
other single-user accounts.

5.3 Ameliorating the item embeddings
To validate the benefit of our mitigation method for representation
learning, we analyzed the K-nearest neighbors of item embeddings
after exploiting our mitigation method, similar to the analysis in
Section 4.1. Let N𝑀

𝑗
denote the K-nearest neighbors of the item

embedding e𝑗 after incorporating the item-item semantic graph
into the LightGCN model in the experimental setting, and N𝑆

𝑗
be

the K-nearest neighbors of e𝑗 learned by LightGCN in the controlled
setting as in Section 4.1. We modify Equations 2 and 3 by replacing
𝜋

(
N𝐴

𝑗
, 𝑖

)
with 𝜋

(
N𝑀

𝑗
, 𝑖

)
as follows:

Push (𝑖,I𝑢 ) =
���{ 𝑗 ∈ I𝑢 | 𝜋 (

N𝑆
𝑗 , 𝑖

)
≺ 𝜋

(
N𝑀

𝑗 , 𝑖

)}��� ; (11)

Pull (𝑖,I𝑢 ) =
���{ 𝑗 ∈ I𝑢 | 𝜋 (

N𝑆
𝑗 , 𝑖

)
≻ 𝜋

(
N𝑀

𝑗 , 𝑖

)}��� . (12)

Thenwe recalculated ratio_push and ratio_pull defined in Equations
4 and 5 based on the new definitions of Push (𝑖,I𝑢 ) and Pull (𝑖,I𝑢 ) .

The results in Table 6 show that our mitigation method reduces
ratio_push and ratio_pull significantly compared to the original
model. Thus, the item-item semantic graph can partly remedy the
detrimental effect on proximity relations between item embeddings
caused by shared accounts. The decrease in ratio_push is smaller
than that in ratio_pull, suggesting that repairing relations with
demoted relevant items is harder than dissolving relations with
promoted irrelevant items due to the scarcity of relevant items.

Counteracting strong spurious associations. Finally, we show the
effectiveness of our mitigation method in counterbalancing strong
spurious item-item associations. Given a pair of items 𝑖 and 𝑗 with
strong spurious association, let 𝑠1, 𝑠2 and 𝑠3 denote the cosine sim-
ilarities of their embeddings in the controlled setting, the experi-
mental setting before and after applying our mitigation method,
respectively. We calculated 𝑠2 − 𝑠1 and 𝑠3 − 𝑠2 for 50 item pairs,
and visualized their distributions in Fig. 5. The positive values of
𝑠2 − 𝑠1 indicate that item pairs with strong spurious associations
have higher cosine similarities in the experimental setting than in
the controlled setting. Our mitigation method significantly reduces
these similarities, as shown by the negative values of 𝑠3 − 𝑠2. Thus,
the reliable item-item semantic graph derived from the multimodal
information can effectively counteract the adverse impact of spuri-
ous second-order item-item associations caused by shared accounts
during graph convolution.
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Table 4: The recommendation performance for single-user accounts when leveraging the image/text features of items in the
experimental setting

Dataset Metric Controlled Experimental
LightGCN LightGCN VBPR MMGCN GRCN BM3 Ours-V Ours-T

Clothing

Recall@10 0.0269 0.0168 0.0094 0.0083 0.0248 0.0275 0.0253 0.0339
Recall@20 0.0403 0.0240 0.0142 0.0153 0.0387 0.0408 0.0381 0.0515
NDCG@10 0.0168 0.0108 0.0059 0.0045 0.0148 0.0175 0.0161 0.0212
NDCG@20 0.0208 0.0130 0.0073 0.0065 0.0188 0.0214 0.0198 0.0264

Beauty

Recall@10 0.0795 0.0640 0.0389 0.0394 0.0628 0.0699 0.0750 0.0765
Recall@20 0.1164 0.0927 0.0578 0.0632 0.0950 0.1070 0.1084 0.1108
NDCG@10 0.0508 0.0416 0.0245 0.0236 0.0394 0.0419 0.0484 0.0493
NDCG@20 0.0623 0.0505 0.0304 0.0307 0.0491 0.0526 0.0587 0.0600

MicroLens

Recall@10 0.0371 0.0319 0.0263 0.0207 0.0330 0.0259 0.0343 0.0365
Recall@20 0.0632 0.0560 0.0462 0.0400 0.0577 0.0473 0.0581 0.0616
NDCG@10 0.0340 0.0285 0.0238 0.0194 0.0288 0.0236 0.0310 0.0331
NDCG@20 0.0447 0.0382 0.0319 0.0273 0.0389 0.0317 0.0407 0.0431

Table 5: Fixing rank changes of demoted relevant items and
promoted irrelevant items

Dataset Clothing Beauty MicroLens

fix_demot 0.0559 0.0601 0.0538
fix_promo -0.2678 -0.2546 -0.2125

Table 6: Analysis of K-nearest neighbors of item embeddings
with𝐾 = 20 : the original LightGCNvs. ourmitigationmethod
in the experimental setting

Dataset Clothing Beauty MicroLens

Ori. Our Ori. Our Ori. Our

ratio_push 0.8660 0.7579 0.8306 0.7426 0.8410 0.8175
ratio_pull 0.8578 0.2604 0.8310 0.3960 0.7676 0.3529

Clothing Beauty MicroLens
0.75

0.50

0.25

0.00

0.25

0.50 s2 s1
s3 s2

Figure 5: Boxplots of the similarity difference for item pairs
with strong spurious association: 𝑠1 is in the controlled set-
ting; 𝑠2 and 𝑠3 are in the experimental setting before and after
using our mitigation method

6 Conclusion and discussion
In this article, we carried out a systematic study to reveal, analyze,
and mitigate the adverse impact of shared accounts on the recom-
mendation performance for other single-user accounts. To reveal
the problem, we conducted a fair comparison of the recommenda-
tion performance for the same user under two settings with the
same test set: the controlled setting has only single-user accounts;
the experimental setting has both single-user accounts and shared
accounts. We observed a marked performance decline for other
single-user accounts in the experimental setting. To explore the
underlying reasons, we focused on demoted relevant items and pro-
moted irrelevant items in the recommendation lists, and compared
its proximity to the user’s consumed items in the embedding space
between two settings. The analyses show that the majority of de-
moted relevant items (resp. promoted irrelevant items) are pushed
away from (resp. pulled closer to) the K-nearest neighborhood of the
user’s consumed items in the experimental setting. To alleviate the
adverse impact, we presented a mitigation method that constructs
a reliable item-item KNN graph from the multimodal information
and integrates it with the bipartite behavior graph for enhanced
representation learning. Experiment results demonstrate that our
mitigation method can counteract the detrimental effect of spuri-
ous second-order item-item associations, ameliorate the proximity
relations between item embeddings, and hence effectively alleviate
the performance degradation for single-user accounts caused by
shared accounts.

At last, we discuss the limitations of our study, and envision
promising future work. The synthetic shared accounts may not per-
fectly reflect the behavior of shared accounts in real-world systems.
For instance, we do not consider that some shared accounts may be
used by more than two members. The effectiveness of our mitiga-
tion method depends on the quality of the multimodal information
of items. If the information in a certain modality is very noisy or of
little importance in influencing the user’s choice, the effect may be
limited or even negative. In the future, it is worth designing more
delicate methods for synthesizing shared accounts by considering
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the patterns of user behavior and membership composition widely
observed in real-world systems. In addition, we will explore more
advanced multimodal recommendation methods that can leverage
the valuable information from multiple modalities and meanwhile
avoid the potential negative effect of fake co-occurrences in the col-
laborative signal as well as the noise in the multimodal information.
Last but not least, our methodology for analyzing the distortion of
proximity relations between item embeddings can be extended to
other research topics in recommender systems, such as analyzing
the performance changes resulting from attacking, defensing, and
denoising methods.
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Algorithm 1: Synthesizing shared accounts

Input:U2 = {𝑢𝑚+1, 𝑢𝑚+2, . . . , 𝑢𝑚+𝑛}, the number of item
pairs with strong spurious association 𝑝 , the mixing
ratio 𝜀, the proportion of shared accounts 𝜌

Output: The set of shared accounts A
1 Let I′ be the top 50% most popular items in I ;
2 A = ∅ ;
// Step 1: Simulating strong spurious item-item

associations

3 𝑐 = 0 ;
4 while 𝑐 < 𝑝 do
5 Randomly select an item 𝑖 from I′ ;
6 Find item 𝑗 = argmin

𝑗∈I′
|U𝑖∩U𝑗 |√︃
|U𝑖 | · |U𝑗 |

;

7 LetU2
𝑖
be the subset of users inU2 who have

consumed item 𝑖 ;
8 LetU2

𝑗
be the subset of users inU2 who have

consumed item 𝑗 ;
9 U′

𝑖
←U2

𝑖
\ U2

𝑗
;

10 U′
𝑗
←U2

𝑗
\ U2

𝑖
;

11 𝑞 = 0 ;

12 while 𝑞 < min
(��U′

𝑖

�� , ���U′𝑗 ���) do
13 Randomly select a user 𝑢 ∈ U′

𝑖
and a user 𝑣 ∈ U′

𝑗
;

14 C𝑢,𝑣 = I𝑢 ∩ I𝑣 ;
15 O𝑢 = I𝑢 \ C𝑢,𝑣 \ {𝑖} ;
16 O𝑣 = I𝑣 \ C𝑢,𝑣 \ { 𝑗} ;
17 𝛿 = min (⌊𝜀 ·min ( |I𝑢 | , |I𝑣 |)⌋,min ( |O𝑢 | , |O𝑣 |)) ,

where 0 < 𝜀 < 1 ;
18 Randomly select 𝛿 − 1 items from O𝑢 as Δ𝑢→𝑣 ;
19 Randomly select 𝛿 items from O𝑣 as Δ𝑣→𝑢 ;
20 I𝑎 ← (O𝑢 \ Δ𝑢→𝑣) ∪ Δ𝑣→𝑢 ∪ C𝑢,𝑣 ;
21 I𝑏 ← (O𝑣 \ Δ𝑣→𝑢 ) ∪ Δ𝑢→𝑣 ∪ C𝑢,𝑣 ∪ {𝑖, 𝑗} ;
22 U2 ←U2 \ {𝑢, 𝑣} , I′ ← I′ \ {𝑖, 𝑗} ,

A ← A ∪ {𝑎, 𝑏};
23 𝑞 = 𝑞 + 1 ;
24 end
25 𝑐 = 𝑐 + 1 ;
26 end

// Step 2: Mimicking weak noisy item-item

associations

27 while |A| < ⌊𝜌 ·
��U1 ∪U2��⌋ ∧ U2 ≠ ∅ do

28 Randomly select two users 𝑢 and 𝑣 fromU2 ;
29 C𝑢,𝑣 = I𝑢 ∩ I𝑣 , O𝑢 = I𝑢 \ C𝑢,𝑣 , O𝑣 = I𝑣 \ C𝑢,𝑣 ;
30 𝛿 = min (⌊𝜀 ·min ( |I𝑢 | , |I𝑣 |)⌋,min ( |O𝑢 | , |O𝑣 |)) , where

0 < 𝜀 < 1 ;
31 Randomly select 𝛿 items from O𝑢 as Δ𝑢→𝑣 ;
32 Randomly select 𝛿 items from O𝑣 as Δ𝑣→𝑢 ;
33 I𝑎 ← (O𝑢 \ Δ𝑢→𝑣) ∪ Δ𝑣→𝑢 ∪ C𝑢,𝑣 ;
34 I𝑏 ← (O𝑣 \ Δ𝑣→𝑢 ) ∪ Δ𝑢→𝑣 ∪ C𝑢,𝑣 ;
35 U2 ←U2 \ {𝑢, 𝑣} , A ← A ∪ {𝑎, 𝑏} ;
36 end

Table 7: The impact of the number of item pairs 𝑝 with strong
spurious association

Dataset 𝑝
% shared
accounts Recall@20 NDCG@20

0 0 0.0403 0.0208
50 1.39% 0.0396 0.0205Clothing
100 2.69% 0.0392 0.0203

0 0 0.1164 0.0623
50 3.23% 0.1135 0.0616Beauty
100 6.13% 0.1117 0.0609

0 0 0.0632 0.0447
50 6.00% 0.0578 0.0411MicroLens
100 10.04% 0.0550 0.0382

either 𝑖 or 𝑗 but not both, denoted asU′
𝑖
andU′

𝑗
respectively (cf.

Lines 7–10). Then for a pair of users 𝑢 ∈ U′
𝑖
and 𝑣 ∈ U′

𝑗
, we swap

a portion of their interacted items to form two synthetic shared
accounts 𝑎 and 𝑏 (cf. Lines 13–21) such that there emerges a fake
co-occurrence of items 𝑖 and 𝑗 in one of them (e.g., 𝑏). The spurious
association between items 𝑖 and 𝑗 will become stronger when the
mixing operation is repeated for more user pairs inU′

𝑖
×U′

𝑗
. (2) It

can also mimic weak noisy associations between relatively more
items. The operations in Step 2 (cf. Lines 28–34) are similar to those
in Step 1 (cf. Lines 13–21); the difference is that the two random
users here do not necessarily have consumed item 𝑖 or 𝑗 . (3) The
data sparsity keeps the same as in the controlled setting, since the
number of accounts and the total amount of observed interactions
remain unchanged.

B Hyper-parameter sensitivity
First we explored the influence of the number of item pairs with
strong spurious association on the recommendation performance.
We incrementally varied 𝑝 in the range {0, 50, 100} with 𝜀 = 0.5 .
Note that 𝜌 was set to 0, which in fact skipped Step 2 of Algorithm 1
that only mimics weak noisy item-item associations in shared ac-
counts. The results are presented in Table 7. Note that there are no
shared accounts when 𝑝 = 0 , which is the same as the controlled
setting. When 𝑝 increases to 50 and further to 100, although the
number of item pairs with strong spurious association is only about
1% of the total number of items in the dataset, there is a marked
decrease in the recommendation performance, especially on the Mi-
croLens dataset. The performance decline on the Clothing dataset
is less obvious, since the number of shared accounts resulting from
Step 1 of Algorithm 1 only accounts for about 2% of the total num-
ber of both single-user accounts and shared accounts. Although
depending on the dataset, a few item pairs with strong spurious
association caused by a small proportion of shared accounts can re-
sult in a marked performance decline for other single-user accounts.

Next we explored the influence of the proportion of shared
accounts on the recommendation performance. We gradually in-
creased 𝜌 with 𝜀 = 0.5 and 𝑝 = 50 , and observe the recommendation
performance for single-user accounts inU1 . The results are shown
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Figure 6: Variation of the performance for single-user accounts w.r.t. the proportion of shared accounts
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Figure 7: Variation of the performance for single-user accounts w.r.t. the mixing ratio

in Figure 6. We can observe a continuous performance decline as
𝜌 increases, which could be attributed to the increasing amount
of weak noisy item-item associations caused by more and more
shared accounts in Step 2 of Algorithm 1.

Finally we investigated how the recommendation performance
for single-user accounts varies with respect to the mixing ratio 𝜀
(i.e., the proportion of two users’ consumed items that are swapped

to form two synthetic shared accounts). We adjusted 𝜀 in the range
{0.1, 0.2, 0.3, 0.4, 0.5} , with 𝑝 = 50 and 𝜌 = 0.5 . As shown in Fig-
ure 7, both Recall@10 and NDCG@10 for single-user accounts
gradually decrease with the increasing of 𝜀 . The possible reason
is that more and more fake co-occurrences are introduced among
items by shared accounts, misleading the model about the relations
between items.
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